Fen, Teknoloji, Mühendislik ve Matematik (FeTeMM) Eğitimine Medya Tasarım Süreçlerinin Entegrasyonu

Problem Durumu: Geçmişten günümüze eğitimle alakalı birçok reform hareketi mikro ölçekte öğrencilerin bilimsel bilgi ve becerilerini geliştirmenin yanı sıra makro düzeyde ülkelerin küresel rekabette sağlam bir yer edinmesini amaçlamaktadır. Bu amaçla hayata geçirilen küresel eğitim reformlarından en günceli olan Fen, Teknoloji, Mühendislik ve Matematik (FeTeMM) eğitimi, ilk ve ortaöğretim seviyesindeki fen ve matematik eğitimi standartlarının yükseltilmesi ve buna bağlı olarak öğrencilerin fen, teknoloji, mühendislik ve matematik alanlarına yöneliminin sağlanması amaçlamaktadır. Bu şekilde bireylerin yükselen küresel ekonomik koşullarda rekabet içerisinde kalabilecekleri düşünülmektedir. Fen eğitimi literatürü FeTeMM destekli öğretim yöntemleri ve öğrenim kazanımlarının FeTeMM araştırmacıları tarafından tanımlanması ve çeşitlendirilmesinin gerekliliğine dikkat çekmektedir. FeTeMM eğitimi Fen, Matematik, Mühendislik ve Teknoloji disiplinlerinin entegrasyonu yoluyla (1) öğrencilerin bu disiplinlerin içeriklerinin kavramsallaştırılması, (2) sosyal ve kültüre dayalı FeTeMM bağlamları yoluyla öğrencilerin FeTeMM disiplinlerini anlayışlarının genişletilmesi ve (3) öğrencilerin FeTeMM disiplinlerine ve bu disiplinler altındaki kariyer seçeneklerine olan ilgisini arttırılmasını amaçlamaktadır. Bu doğrultuda projeye dayalı öğrenmenin bir türü olarak medya tasarım süreçleri, teknolojik araç ve gereçleri kullanımı yoluyla öğrencilerin belirli bir kitleyi hedefleyerek dijital medya ürünleri tasarlamalarını hedeflemektedir. Medya tasarımına dayalı öğrenme süreçleri bireylerin karmaşık kavramsal bilgileri anlamlı yollardan öğrenmesi ve kullanmasına fırsat tanımaktadır. Bunun yanı sıra öğrencilerin problem çözme, analiz etme, yaratıcı düşünme ve iletişim becerilerinin gelişmesini, araştırma-sorgulamaya dayalı öğrenme yoluyla kavramsal bilgilerinin artmasını, ve öğrenme süreçlerinde aktif rol almalarını sağlamaktadır. 

Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

Problem Statement:Science, technology, engineering and mathematics (STEM) education aims at improving students’ knowledge and skills in science and math, and thus their attitudes and career choices intheseareas. The ultimate goal in STEM education is to create scientifically literate individuals whocan survive in the global economy. The identification of new learning outcomes, curriculum programs, and teaching practices needs to be clarified by the STEM education community. Media design processes are a potential teaching method in STEM education that requires learners to designdigital media artifacts using a variety of technological tools.Purpose of the Study: This study investigatesthe impactof science, technology, engineering, and mathematics (STEM) integrated media design processes on 8th grade students’ attitudes towardscience and technology classes, as well as their views about these design processes in after-school science activities. In addition, it demonstratesthe opinions of the classroom teacher regardingthe integration of media design processes in science classes.Method: Using anaction research design, 21 secondary students from a public school participated in this 14-week study. The quantitative data that was collected from the student attitude survey for science and technology classes was analyzed using the Wilcoxon signed-rank test, while the qualitative data (student artifacts, PSA forms, semi-structured interviews, and field notes) was analyzed through open coding and thematic analysis respectively.Findings and Results: The findings indicated that STEM-integrated media design processes positively impacted the participating students’ attitudes toward science and media design activities. In addition, students were more motivated and engaged in the media design processes, which improved their learning ofscience content and participation in class discussions.Conclusion and Recommendations: The literature in STEM education calls for new curricular activities and teaching practices as well as the integration of art in STEM. In addition, the visual technology industry in this century creates a job market for the STEM-literate people who are able to apply their knowledge of STEM fields in visual technologies and art. In response to these demands, the positive outcomes of media design processes used in this study offer an encouragingpremise in meeting the objectives of STEM education.

___

  • Aydeniz, M., Cakmakcı, G., Cavas, B., Ozdemir, S., Akgunduz, D., Corlu, M. S., &Oner, T. (2015).STEM eğitimiTürkiyeraporu: Gününmodasımıyoksagereksinim mi? [A report on STEM Education in Turkey: A provisional agenda or a necessity?][White Paper].İstanbul, Turkey: Aydın Üniversitesi. Retrieved May 31, 2015, fromhttp://www.aydin.edu.tr/belgeler/IAU-STEM-Egitimi-Turkiye-Raporu-2015.pdf
  • Bates, A. W. (2000). Managing technological change. San Francisco: Jossey-Bass.
  • Bybee, R. W. (2013). The case for STEMe: Challenges and opportunities. National Science Teachers Association.
  • Bruckman, A., & Resnick, M. (1995). The MediaMOO project.Convergence: The International Journal of Research into New Media Technologies, 1(1), 94-109.
  • Cavas, B., Bulut, C., Holbrook, J., & Rannikmae, M. (2013). Fen eğitiminemühendislikodaklıbiryaklaşım: ENGINNER projesiveuygulamaları [An engineering-focused approach to science education : ENGINNER projects and applications]. Fen BilimleriÖğretimiDergisi, 1(1), 12-22.
  • Delpech, R. (2002) Why are school students bored with science?.Journal of Biological Education, 36(4) 156-157.
  • Gibbons, M. T. (2011). Engineering by the numbers. American Society for Engineering Education. Washington DC.
  • Harel, I. (1991). Children designers: Interdisciplinary constructions for learning and knowing mathematics in a computer-rich school. Norwood, NJ: Ablex Publishing.
  • Kafai, Y. B. (2005). The classroom as living laboratory: design-based research for understanding, comparing, and evaluating learning science through design. Educational Technology, 45(1), 28-34.
  • Karahan, E., & Roehrig, G. (2014). Constructing Media Artifacts in a Social Constructivist Environment to Enhance Students’ Environmental Awareness and Activism. Journal of Science Education and Technology, 24(1), 1-16.
  • Lambert, N. M., & McCombs, B. J. (1998). Introduction: Learner-centered schools and classrooms as a direction for school reform. In N.M. Lambert, & B. L. McCombs (Eds.), How students learn: Reforming schools through learner-centered education (pp. 1-22), Washington, DC: American Psychological Association.
  • LeCompte, M. D., & Preissle, J. (1993). Ethnography and qualitative design in educational research (2nd ed.). San Diego, CA: Academic Press.
  • Lester, B. T., Ma, L., Lee, O., & Lambert, J. (2006). Social activism in elementary science education: A science, technology, and society approach to teach global warming. International Journal of Science Education, 28(4), 315-339.
  • Liu, M. (2003). Enhancing learners' cognitive skills through multimedia design. Interactive Learning Environments, 11(1), 23-39.
  • Margolis J., & Fisher A. (2001). Unlocking the clubhouse: women in computing. The MIT Press, Cambridge.
  • Marulcu, I., & Sungur, K. (2012). Fen bilgisiöğretmenadaylarınınmühendisvemühendislikalgılarınınveyöntemolarakmühendislik-dizaynabakışaçılarınınincelenmesi [Investigating pre-service science teachers’ perspectives on engineers, engineering and engineering design as context].AfyonKocatepeÜniversitesi Fen BilimleriDergisi, 12, 13-23.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded source book, 2nd edition. Thousand Oaks, CA: Sage.
  • Milgram, D. (2011). How to recruit women and girls to the science, technology, engineering, and math (STEM) classroom.Technology and Engineering Teacher, 71(3), 4-8.
  • Mills, G. E (2003). Action research: a guide for the teacher researcher (2nd ed.), New Jersey: Merrill Prentice Hall, 2003.
  • Ministry of National Education (MNE) (2013).İlköğretimkurumları (ilkokullarveortaokullar) fen bilimleridersi (3, 4, 5, 6, 7, ve 8.sınıflar) öğretimprogramı. [Elementary education ( primary and middle schools ) science lessons (3, 4, 5, 6, 7, and 8th grade) curriculum]. Retrieved May, 2, 2015,fromhttp://ttkb.meb.gov.tr/www/guncellenen-ogretim-programlari-ve-kurul-kararlari/icerik/150
  • National Academy of Engineering (NAE). (2009). Engineering in K–12 education: Understanding the status and improving the prospects. Washington, DC: National Academies Press.
  • National Academy of Sciences (NAS) (2006).Rising above the gathering storm: Energizing and employing America for a brighter economic future. Washington, DC: National Academies Press.
  • Newstetter, W. (2000). Guest editor’s introduction.The Journal of Learning Sciences, 9(3). 243-246.
  • Nuhoglu, H. (2008). İlköğretim fen veteknolojidersineyönelikbirtutumölceğiningeliştirilmesi [The development of an attitude scale for science and technology course].İlköğretim online, 7(3), 627-639.
  • Pallant, J. (2005). SPSS survival manual. A step-by-step guide to data analyses using SPSS for windows. Philadelphia, PA: Open University Press.
  • Papert, S. (1991). Situating constructionism. In I. Harel, & S. Papert (Eds.), Constructionism (pp. 1 - 12). Norwood, NJ: Ablex Publishing.
  • Platz, J. (2007). How do you turn STEM into STEAM? Add the arts. Retrieved April, 9, 2012, from http://www.ikzadvisors.com/wp-content/uploads/2009/09/STEM-%2B-ARTS-STEAM.pdf
  • Robelen, E. W. (2011). New science framework paves way for standards. EducationWeek, 30(37). Retrieved August 9, 2014, fromhttp://www.edweek.org/ew/articles/2011/07/19/37science.h30.html?tkn=NXLF84%2BGWb96XT8cVTiWy9AqtICk76XPN0FL&cmp=clp-edweek
  • Roehrig, G. H., Moore, T. J., Wang, H.-H., & Park, M. S. (2012). Is adding the E enough? Investigating the impact of K-12 engineering standards on the implementation of STEM integration. School Science and Mathematics, 112(1), 31–44.
  • Sagor, R. (2005). The action research guidebook: A four step process for educators and teams. Thousand Oaks, CA: Corwin.
  • Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and technique. Newbury Park, CA: Sage.
  • Sungur Gul, K., & Marulcu, I. (2014). Yöntemolarakmühendislik- dizaynavedersmateryaliolaraklogolaraöğretmenileöğretmenadaylarınınbakışaçılarınınincelenmesi[ Investigation of in service and pre service science teachers’ perspectives about engineering-design as an instructional method and legos as an instructional material ].Turkish Studies-International periodical fort he languages, literatüre and history of Turkish or Turkic, 9(2), 761-786.
  • TUSIAD (2014).Fen, teknoloji, mühendislikvematematikalanındaeğitimalmışişgücüneyöneliktalepvebeklentileraraştırması [Demands and expectations towardlabour force educated on Science, technology, engineering and mathematics). Retrieved May, 2, 2015, from http://www.tusiad.org.tr/__rsc/shared/file/STEM-ipsos-rapor.pdf
  • Williams, C., Stanisstreet, M., Spall, K., Boyes, E., & Dickson, D. (2003). Why aren’t secondary students interested in physics?.Physics Education, 38(4) 324-329.
  • Zollman, A. (2012). Learning for STEM literacy: STEM literacy for learning. School Science and Mathematics, 112(1), 12-
Eurasian Journal of Educational Research-Cover
  • ISSN: 1302-597X
  • Başlangıç: 2015
  • Yayıncı: Anı Yayıncılık