Fen Bilimleri ve Sosyal Bilgiler Öğretmenlerinin Sosyobilimsel Konular Temelli Öğretimi: Durum Çalışması

Problem Durumu: Sosyobilimsel konular, bilim ile bağlantıları bulunan ve toplum tarafından sosyal önem arz edilen durumlar olarak tanımlanmaktadır. Günümüz fen bilimleri dersi öğretim programları incelendiğinde; sosyobilimsel konulara ayrı bir öğrenme alanı olarak yer verildiği görülmektedir. Fen eğitimi alanında gerçekleştirilen çalışmalar ise fen bilimleri öğretmenlerinin sosyobilimsel konuları derslerine entegre etme konusunda gerekli yeterliklere sahip olmadıklarını göstermektedir. Fen bilimleri öğretmenlerinin bilimin sosyal ve etik yönünü öğretmede yaşadıkları tüm zorluklara rağmen, sosyobilimsel konuların fen bilimleri ve sosyal bilgiler öğretmenleri tarafından işbirliği içerisinde öğretimine odaklanmış çalışmalar ise sınırlıdır. Alanyazındaki bu eksikliği gidermek adına, bu çalışmada fen bilimleri ve sosyal bilgiler öğretmeninin işbirliği içerisinde tasarladıkları sosyobilimsel konular odaklı çevre etiği dersi incelenmiştir.Araştırmanın Amacı: Bu çalışmada fen bilimleri ve sosyal bilgiler öğretmeninin sosyobilimsel konular odaklı çevre etiği dersini işbirliği içerisinde tasarlama ve öğretim sürecindeki tecrübelerini anlama ve betimleme amaçlanmıştır.Araştırmanın Yöntemi: Fen bilimleri ve sosyal bilgiler öğretmenlerinin sosyobilimsel konular odaklı çevre etiği dersini işbirliği içerisinde tasarlama ve öğretim sürecindeki deneyimleri üzerine odaklanılan bu çalışma, nitel araştırma yöntemlerinden durum çalışması şeklinde gerçekleştirilmiştir. Bu durum çalışmasında, araştırmacıların tek bir durumu incelerken katılımcıların farklı düşünce ve davranışlarını inceleme imkanı vermesi dolayısıyla yerleştirilmiş iç içe geçmiş tek durum deseni seçilmiştir. Araştırmanın çalışma grubunu Amerika82 Engin KARAHAN – Gillian ROEHRIG / Eurasian Journal of Educational Research 72 (2017) 63-82Birleşik Devletleri’nde bir ortaöğretim kurumunda çevre etiği dersini işbirliği içerisinde yürüten bir fen bilimleri ve bir sosyal bilgiler öğretmeni oluşturmaktadır. Araştırmanın verileri yarı yapılandırılmış görüşmeler, gözlem notları ve yansıtıcı günlükler ile toplanmıştır. İlk görüşmede katılımcıların sosyobilimsel konular ile ilgili epistemolojik ve pedagojik inançlarını belirleme, ikinci görüşme de ise öğretmenlerin çevre etiği dersini işbirliği içinde tasarım ve öğretim sürecindeki tecrübelerini anlama amaçlanmıştır. Gözlem ve günlüklerde ise öğretim sürecinde gerçekleşen durumlar, görüşmelerde katılımcıların ortaya koydukları tecrübelerini destekleme amacıyla kullanılmıştır. Elde edilen verilerin analizinde ise sırasıyla açık kodlama, örüntü ve kategorilerin belirlenmesi, tema ve modellerin oluşturulması izlenmiştir.Araştırmanın Bulguları: Araştırma bulguları, fen bilimleri ve sosyal bilgiler öğretmenlerinin, öğretim programının ön gördüğü çevre eğitimi dersi içeriği ve ders kitaplarının sosyobilimsel konuların tüm boyutlarını yeterince içeremediklerine yönelik eleştiriler getirdiklerini göstermektedir. Dolayısıyla, sosyobilimsel konulara odaklandıkları çevre etiği dersini çevre sorunlarına sosyal, ekonomik ve çevresel bakış açıları ile inceleyebilmek adına üç boyut fikrine göre tasarlamışlardır. Öğrencilerini ders kapsamındaki projelere hazırlarken, ders dışı kaynakların öğrencileri sosyobilimsel konulara hazırlama ve motive etmede daha etkili olduğunu düşünerek ders kitapları yerine bu kaynakları kullanmayı tercih etmişlerdir. Bu bulgulara ek olarak, çevre etiği dersinin ilerleyen süreçlerinde öğrenci gruplarının ilgi duydukları alanlara yönelerek projelerini bu alanlarda gerçekleştirmelerini motive ederek, öğrencilerin karar verme süreçlerindeki kontrolünü zenginleştirmeyi amaçlamışlardır.Araştırmanın Sonuçları ve Önerileri: Fen bilimleri ve sosyal bilgiler öğretmenleri sosyobilimsel konular odaklı çevre dersindeki rollerini açıklarken, geleneksel öğretmenlik sorumluluklarından farklı olarak kendilerini danışmanlar olarak tanımlamışlardır. Dolayısıyla, kendileri içeriği sağlamaktan sorumlu kişi olmak yerine, öğrencilerin sosyobilimsel konular bağlamındaki ilgi ve çıkarlarını keşfetmelerinde onların danışacakları uzmanlar haline gelmişlerdir. Araştırmaya katılan öğretmenler; öğrencilerine ilgi duydukları konulara yönelik projeler gerçekleştirmelerine fırsat verme, öğrencilerini çevre dostu adımlar atmaya motive ederek tartışmalı sosyobilimsel konularda kendi bakış açılarını bu adımlarda ortaya koymalarını hedeflemişlerdir. Öğrencilerin gerçekleştirdikleri toplumsal çevre hareketleri göz önünde bulundurulduğunda, çevre eğitiminin öncül hedeflerinden olan öğrencilerin çözüm süreçlerinde rol oynayarak bir parçası olmaları hedefinin bu ders kapsamında sağlanması için önemli bir çaba gösterildiği ortaya çıkmaktadır. Öğretmenlerin sosyobilimsel konular ile ilgili farklı bakış açılarını öğrencilere kazandırma ve öğrencilerin kendi kontrolleri doğrultusunda aktif rol almaları, onların toplumun sosyobilimsel konulardaki yaygın algılarını eleştirebilme ve aksi doğrultuda adımlar atabilme noktasında önemli bir faktör olmaktadır.

Case Study of Science and Social Studies Teachers Co-Teaching Socioscientific Issues-Based Instruction

Purpose: Science education literature has indicated that teachers do not always feel comfortable teaching socioscientific issues (SSI) that are infused with several social domains. In order to address this problem in teaching SSI, this study is designed to understand and describe the experiences of a science teacher and a social studies teacher, who collaboratively designed and taught an SSI-based environmental ethics class. Research Methods: The purpose of this descriptive case study was to portray how a science and a social studies teacher co-design and co-teach an environmental ethics class.The data collection instruments were interviews, observations, and reflective journals. Thematic analysis of the data was made via a qualitative data analysis software. Findings: The findings indicated that both participants criticized the science curriculum for not being able to address every dimension of SSI. Therefore, they structured their environmental ethics class based on the “triple bottom idea” in order to look at those issues from social, economic, and environmental points of view. One of the highlights of their environmental ethics class was the opportunity given to the students to work on projects they felt passionate about. The participants described their role in the environmental ethics class as a consultant, which was different from traditional settings. Therefore, they no longer provided the content, but rather consulted with their students to explore their vested interests. Implications for Research and Practice: Giving students power to choose their own project topics, the teachers aimed at enhancing the motivation of students in taking pro-environmental actions, as well as developing their own perspective about controversial SSI. Considering the community involvement of the students, this missing piece of students’ community involvement and agency in most educational settings was strongly present in the environmental ethics class.

___

  • Barth, R. S. (1990). Improving schools from within: Teachers, parents, and principals can make the difference. San Francisco: Jossey-Bass.
  • Basu, S. J., Barton, A. C., Clairmont, N., & Locke, D. (2009). Developing a framework for critical science agency through case study in a conceptual physics context. Cultural Studies of Science Education, 4(2), 35-371.
  • Bauwens, J., Hourcade, J. J., & Friend, M. (1989). Cooperative teaching: A model for general and special education integration. Remedial & Special Education, 10(2), 17-22.
  • Bencze, L., Sperling, E., & Carter, L. (2012). Students’ research-informed socioscientific activism: Revisions for a sustainable future. Research in Science Education, 42(1), 129-148.
  • Berkman, M. B., Pacheco, J. S., & Plutzer, E. (2008). Evolution and creationism in America’s classrooms: A national portrait. Public Library of Science Biology, 6, 920-924.
  • Cohen, E. G. (1973). Open-space schools: The opportunity to become ambitious. Sociology of Education, 46, 143-161.
  • Cook, L., & Friend, M. (1995). Co-teaching: Guidelines for creating effective practices. Focus on Exceptional Children, 28(3), 1-16. Dillon, J. T. (1994). Using discussion in classrooms. Buckingham, UK: Open University Press.
  • Fensham, P. (1997). School science and its problems with scientific literacy. In R. Levinson & J. Thomas (Eds.), Science today: Problem or crisis? (pp. 119–136). London, UK: Routledge.
  • Fleming, R. (1986). Adolescent reasoning in socio-scientific issues, Part II: Nonsocial cognition. Journal of Research in Science Teaching, 23, 689- 698.
  • Friend, M., & Cook, L. (2007). Interactions. Collaboration skills for school professionals (5th ed.). Boston, MA: Allyn & Bacon.
  • Harris, R., & Ratcliffe, M. (2005). Socio-scientific issues and the quality of exploratory talk what can be learned from schools involved in a 'collapsed day' project? The Curriculum Journal, 16, 439-453.
  • Hyslop-Margison, E. J., & Armstrong, J. (2004). Critical thinking in career education: The democratic importance of foundational rationality. Journal of Career and Technical Education, 21(1), 39-49.
  • Klosterman, M. L., Sadler, T. D., & Brown, J. (2012). Science teachers’ use of mass media to address socio-scientific and sustainability issues. Research in Science Education, 42(1), 51-74.
  • Lee, H., & Witz, K. G. (2009). Science teachers' inspiration for teaching socio-scientific issues: Disconnection with reform efforts. International Journal of Science Education, 31(7), 931-960.
  • Levinson, R. (2006). Towards a theoretical framework for teaching controversial socioscientific issues. International Journal of Science Education, 28(10), 1201–
  • Levinson, R. & Turner, S. (2001). Valuable lessons: engaging with the social context of science in schools. London, UK: Wellcome Trust.
  • McNeill, K. L., & Vaughn, M. H. (2012). Urban high school students’ critical science agency: conceptual understandings and environmental actions around climate change. Research in Science Education, 42(2), 373-399.
  • Morgan, K. N. (2012). Middle school and high school general-education and special education teachers' coteaching experience (Doctoral dissertation, Argosy University, Nashville).
  • Mueller, M.P., Zeidler, D.L., & Jenkins, L.L. (2011). Earth's role in moral reasoning and functional scientific literacy. In J. DeVitis (Ed.), Character and moral education: A reader. New York: Peter Lang.
  • Osborne, J., Duschl, R., & Fairbrother, R. (2002). Breaking the mould? Teaching science for public understanding. London, UK: The Nuffield Foundation.
  • Rutledge, M. L., & Mitchell, M. A. (2002). Knowledge structure, acceptance and teaching of evolution. American Biology Teacher, 64, 21-27.
  • Ryder, J. (2001). Identifying science understanding for functional scientific literacy. Studies in Science Education, 36, 1-44.
  • Sadler, T. D. (2009). Situated learning in science education: Socioscientific issues as contexts for practice. Studies in Science Education, 45, 1-42.
  • Sadler, T. D. (2011). Situating socio-scientific issues in classrooms as a means of achieving goals of science education. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning, and research (pp. 1-9). The Netherlands: Springer.
  • Sadler, T. D., Amirshokoohi, A., Kazempour, M., & Allspaw, K. M. (2006). Socioscience and ethics in science classrooms: Teacher perspectives and strategies. Journal of Research in Science Teaching, 43(4), 353-376.
  • Sadler, T. D. & Zeidler, D. L. (2003). Scientific errors, atrocities, and blunders: using bad science to promote moral reasoning. In D. L. Zeidler (Ed.), The role of moral reasoning and discourse on socioscientific ıssues in science education. Dordrecht: Kluwer.
  • Schulte, A. C., Osborne, S. S., & McKinney, J. D. (1990). Academic outcomes for students with learning disabilities in consultation and resource programs. Exceptional Children, 57(2), 162 172.
  • Simonneaux, L., & Simonneaux, J. (2009). Students’ socio-scientific reasoning on controversies from the viewpoint of education for sustainable development. Cultural Studies of Science Education, 4(3), 657-687.
  • Thousand, J. S., Villa, R. A., & Nevin, A. I. (2006). The many faces of collaborative planning and teaching. Theory into Practice, 45(3), 239-248.
  • Villa, R. A., Thousand, J. S., Nevin, A. I., & Malgeri, C. (1996). Instilling collaboration for inclusive schooling as a way of doing business in public schools. Remedial Special Education, 7(3), 182-192.
  • Walsh, J. M. (1992). Student, teacher, and parent preference for less restrictive special education models-Cooperative teaching. Case In Point, 6(2), 1-12.
  • Walther-Thomas, C. S. (1997). Co-Teaching Experiences The Benefits and Problems That Teachers and Principals Report Over Time. Journal of Learning Disabilities, 30(4), 395-407.
  • Yager, R. (1992). Viewpoint: What we did not learn from the 60s about science curriculum reform. Journal of Research in Science Teaching, 29, 905–910.
  • Yin, R. (2003). Case study research: Design and methods (3rd ed.). Thousand Oak, CA: Sage.
  • Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86, 343–367.
  • Zeidler, D.L. (2014). Socioscientific Issues as a Curriculum Emphasis: Theory, Research and Practice. In N. G. Lederman & S. K. Abell (Eds.), Handbook of Research on Science Education, Volume II (pp. 697-726). New York, NY: Routledge.