Enerji Okuryazarlığı Ölçeğinin Türkçeye Uyarlanması: Geçerlilik ve Güvenilirlik Çalışması

Bu araştırmanın amacı DeWaters, Qaqish, Graham ve Powers (2013) tarafından geliştirilen “Enerji Okuryazarlığı Ölçeği”ni Türkçeye uyarlamak ve ölçeğin Türkçe formunun geçerlilik ve güvenilirliğini sağlamaktır. Bu amaç doğrultusunda, ölçek maddeleri önce Türkçeye çevrilmiş, sonra maddelerin İngilizceye geri çevrilmesi yapılmıştır. Bir sonraki aşamada ise çeviriler arasındaki tutarlılık incelenmiş, anlam kaybı ya da değişiklikler kontrol edilmiştir. Yapılan işlemler İngiliz Dili Eğitimi öğretim elemanları tarafından değerlendirmeye tabi tutularak, soruların anlaşılırlığı, kelime ve cümle yapıları ile kültürel uygunluğu gözden geçirilmiş ve ölçeğe son hali verilmiştir. Ölçeğin geçerlilik ve güvenilirliğinin sağlanması amacıyla ölçek Muğla ili merkez ortaokullarındaki 550 öğrenciye uygulanarak çeşitli analizler yapılmıştır. İlk olarak ölçeğin yapı geçerliliğini sağlamak için açımlayıcı faktör analizi (AFA) yapılmıştır. Sonrasında AFA’dan elde edilen madde-faktör yapısının model uyumu doğrulayıcı faktör analizi (DFA) ile test edilmiştir. Son olarak ise ölçeğin güvenilirlik çalışmaları kapsamında ölçeğin genelinin ve her bir faktörün (bilişsel boyutta KR-20) Cronbach-Alpha güvenilirlik katsayısı hesaplanmıştır. Araştırma sonucunda ölçeğin bilişsel, duyuşsal ve davranışsal olmak üzere 3 boyutu kapsadığı tespit edilmiştir. Ayrıca ölçekteki her bir boyuta yönelik iç tutarlılık katsayısının .72 ve .82 arasında değiştiği, tüm ölçeğe ait değerin ise .83 olduğu belirlenmiştir. Bu doğrultuda ortaokul öğrencilerinin enerji eğitimine ilişkin enerji okuryazarlıklarının değerlendirilebileceği geçerli ve güvenilir bir ölçek geliştirilmiştir.

Adaptation of the Energy Literacy Scale into Turkish: A Validity and Reliability Study

The purpose of the current study was to adapt the “Energy Literacy Scale” developed by DeWaters, Qaqish, Graham and Powers (2013) into Turkish and to ensure its reliability and validity for the Turkish context. The items were first translated into Turkish and then back translated into English. In the next stage, the consistency between the translations was checked to analyze any missing in meaning. English lecturer evaluated items’ comprehensibility levels, word and sentence structures and cultural compliance level. The scale was administered to 550 students from middle schools in the city of Muğla. Then, Exploratory Factor Analysis (EFA) was firstly conducted to establish the construct validity of the scale. Later, to test the model fit of the item-factor structure obtained from EFA, Confirmatory Factor Analysis (CFA) was run. Finally, Cronbach Alpha reliability coefficient was calculated for the whole scale and for each factor. The results appeared a three-factor scale (cognitive, affective and behavioral). Moreover, the internal consistency coefficients for each factor ranged from .72 to .82 as well as the coefficient for the whole scale was found to be .83. Overall, a valid and reliable scale was developed to evaluate secondary school students’ energy literacy levels of energy education.

___

  • Akitsu, Y., Ishihara, K. N., Okumura, H., & Yamasue, E. (2017). Investigating energy literacy and its structural model for lower secondary students in Japan. International Journal of Environmental and Science Education, 12(5), 1067-1095.
  • Ajzen, I. & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.
  • Armaroli, N. & Balzani, V. (2007). The future of energy supply: challenges and opportunities. Angewandte Chemie International Edition, 46 (1–2), 52–66.
  • Barrow, L. H. & Morrisey, J. T. (1989). Energy literacy of ninth-grade students: A comparison between Maine and New Brunswick. Journal of Environmental Education, 20(2), 22-25.
  • Bodzin, A. (2012). Investigating urban eight-grade students’ knowledge of energy resources. International Journal of Science Education, 34(8), 1255-1275.
  • Bodzin, A.M., Fu, Q., Peffer, T.E., & Kulo, V. (2013). Developing energy literacy in US middle-level students using the geospatial curriculum approach. International Journal of Science Education, 35(9), 1561-1589.
  • Boylan, C. (2008). Exploring elementary students’ understanding of energy and climate change. International Electronic Journal of Elementary Education, 1(1), 1-15.
  • Brounen, D., Kok, N., & Quigley, J.M. (2013). Energy literacy, awareness, and conservation behavior of residential households. Energy Economics, 38, 42-50.
  • Chen, K.L., Liu, S.Y., & Chen, P.H. (2015). Assessing multidimensional energy literacy of secondary students using contextualized assessment. International Journal of Environmental and Science Education, 10(2), 201-218.
  • Chen, S.J., Chou, Y.C., Yen, H.Y., & Chao, Y.L. (2015). Investigating and structural modeling energy literacy of high school students in Taiwan. Energy Efficiency, 8(4), 791-808.
  • Chikaire, J.U., Ani, A.O., Nnadi, F.N., & Godson-Ibeji, C.C. (2015). Energy extension and energy literacy for sustainable energy development in rural Nigeria. Agricultural Advances, 4(8), 84-92.
  • Cotton, D.R.E., Miller, W., Winter, J., Bailey, I., & Sterling, S. (2015). Developing students’ energy literacy in higher education. International Journal of Sustainability in Higher Education, 16(4), 456-473.
  • DeWaters, J. E. & Powers, S. E. (2011). Energy literacy of secondary students in New York State (USA): A measure of knowledge, affect, and behavior. Energy policy, 39(3), 1699-1710.
  • DeWaters, J. & Powers, S. (2013). Establishing measurement criteria for an energy literacy questionnaire. The Journal of Environmental Education, 44(1), 38-55.
  • DeWaters, J., Qaqish, B., Graham, M., & Powers, S. (2013). Designing an energy literacy questionnaire for middle and high school youth. Journal of Environment Education, 44(1), 56–78.
  • Fah, L.Y., Hoon, K.C., Munting, E.T., & Chong, C.A. (2012). Secondary school students' energy literacy: Effect of gender and school location. OIDA International Journal of Sustainable Development, 3(7), 75-86.
  • Göcük, A. & Şahin, F. (2016). The effect of problem based learning on 5th grades students’ energy literacy. Journal of Human Sciences, 13(2), 3446-3468.
  • Güven, G. & Sülün, Y. (2017). Pre-service teachers' knowledge and awareness about renewable energy. Renewable and Sustainable Energy Reviews, 80, 663-668.
  • Hırça, N., Çalık, M., & Akdeniz, F. (2008). Investigating grade 8 students’ conceptions of energy and related concepts. Journal of Turkish Science Education, 5(1), 75-85.
  • Horst, D., Harrison, C., Staddon, S., & Wood, G. (2016). Improving energy literacy through student-led fieldwork–at home. Journal of Geography in Higher Education, 40(1), 67-76.
  • Jin, H. & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49(9), 1149-1180.
  • Karpudewan, M., Ponniah, J., & Zain, A.N.M. (2016). Project-based learning: An approach to promote energy literacy among secondary school students. The Asia-Pacific Education Researcher, 25(2), 229-237.
  • Lay, Y. F., Khoo, C. H., Treagust, D. F., & Chandrasegaran, A. L. (2013). Assessing secondary school students' understanding of the relevance of energy in their daily lives. International Journal of Environmental and Science Education, 8(1), 199-215.
  • Lee, L.S., Chang, L.T., Lai, C.C., Guu, Y.H., & Lin, K.Y. (2015). Energy literacy of vocational students in Taiwan. Environmental Education Research, 23(6), 855-873.
  • Lee, H.S. & Liu, O.L. (2010). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Science Education, 94(4), 665-688.
  • Lee, L.S., Lee, Y.F., Altschuld, J.W., & Pan, Y.J. (2015). Energy literacy: Evaluating knowledge, affect, and behavior of students in Taiwan. Energy Policy, 76, 98-106.
  • Liu, X. & Tang, L. (2004). The progression of students’ conceptions of energy: A cross-grade, cross-cultural study. Canadian Journal of Science, Mathematics and Technology Education, 4(1), 43-57.
  • Opitz, S. T., Harms, U., Neumann, K., Kowalzik, K., & Frank, A. (2015). Students’ energy concepts at the transition between primary and secondary school. Research in Science Education, 45(5), 691-715.
  • Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524.
  • Rizaki, A. & Kokkotas, P. (2013). The use of history and philosophy of science as a core for a socioconstructivist teaching approach of the concept of energy in primary education. Science & Education, 22(5), 1141-1165.
  • Schermelleh-Engel, K., Moosbrugger, H., & Müler, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, (8)2, 23-74.
  • Seçer, İ. (2013). SPSS ve Lisrel ile pratik veri analizi. Ankara: Anı Yayıncılık.
  • Sovacool, B.K. & Blyth, P.L. (2015). Energy and environmental attitudes in the green state of Denmark: implications for energy democracy, low carbon transitions, and energy literacy. Environmental Science & Policy, 54, 304-315.
  • Tavşancıl, E. (2006). Tutumların ölçülmesi ve SPSS ile veri Analizi (3. Baskı). Ankara: Nobel Yayınları.
  • Töman, U. & Odabaşı-Çimer, S. (2013). An investigation into the conception energy conservation at different educational levels. Journal of Educational and Instructional Studies in the World, 3(1), 44-52.
  • Ünal-Çoban, G., Aktamış, H., & Ergin, Ö. (2007). İlköğretim 8. sınıf öğrencilerinin enerjiyle ilgili görüşleri. Kastamonu Eğitim Dergisi, 15(1), 175-184.
  • Yürümezoğlu, K., Ayaz, S., & Çökelez, A. (2009). Grade 7-9 students’ perceptions of energy and related concepts. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 3(2), 52-73.