ÇOKLU DEPOLARDA RAF ATAMA PROBLEMİ İÇİN MATEMATİKSEL VE SEZGİSEL ÇÖZÜM YAKLAŞIMLARI

Tedarik zincirinin en önemli unsurlarından biri depolardır. Etkili depo düzeni, müşteriye teslimat süresini ve depolama maliyetini azaltır. Bu çalışmada, birden fazla depo ve heterojen hammadde içeren seramik fabrikasında depo yerleşim problemi tartışılmıştır. Sorunun çözümü için çok amaçlı bir karma tamsayılı matematiksel model önerilmiştir. Modelin ilk amacı, hammadde öncelik katsayılarını göz önünde bulundurarak hammaddeleri raflara atayarak, iki depo ve dört fabrika arasındaki taşıma mesafesini en aza indirmek; ikincisi ise bu depolarda kullanılan raf miktarını en aza indirmektir. Problem NP-Zor olarak sınıflandırıldığı için, matematiksel modele ek olarak, büyük ölçekli problemleri çözmek için de bir sezgisel algoritma geliştirilmiştir. Bu sezgisel çözüm algoritmasını temel alan, kullanıcı dostu arayüze sahip bir karar destek sistemi (KDS) önerilmiştir. Önerilen KDS' nin yardımıyla, depoların daha verimli kullanılması ve hammaddelerin sistematik olarak depolanması sağlanmıştır. Bu şekilde, toplam nakliye maliyeti fabrikada yaklaşık % 61 oranında azaltılmıştır.

MATHEMATICAL AND HEURISTIC SOLUTION APPROACHES FOR SHELF ASSIGNMENT PROBLEM IN MULTIPLE WAREHOUSES

One of the most important elements of the supply chain is the warehouses. Effective warehouse layout reduces delivery time to the customer and the cost of storage. In this study, warehouse layout problem in a ceramic factory with multiple warehouses and heterogeneous raw materials is discussed. For the solution of the problem, a multi-objective mixed integer mathematical model is proposed. The first aim of the model is to assign the raw materials to the shelves considering the raw material priority coefficients by minimizing the transportation distance between two warehouses and four factories and the second one is minimizing amount of shelf used in these warehouses. As the problem is classified as NP-Hard, in addition to the mathematical model, a heuristic algorithm has been also developed to solve large-scale problems. Based on this heuristic, a decision support system (DSS) with a user-friendly interface has been proposed for the engineers in the factory. By the help of proposed DSS, more efficient use of warehouses and systematic storage of items have been provided. In this manner, total transportation cost is decreased approximately 61% in the factory.

___

  • Baray, S. & Çakmak, E. (2014). Design Methodology for a Multiple-Level Warehouse Layout Based On Particle Swarm Optimization Algorithm. Institute of Business Administration-Management Journal, 25(77), 13-38. https://www.semanticscholar.org/paper/DESIGN-METHODOLOGY-FOR-A-MULTIPLE-LEVEL-WAREHOUSE-Baray-%C3%87akmak/84a03c3b9014820ae3db168fd8bae27d63833343
  • Bartoszewicz, A., & Latosinski, P. (2019). Sliding mode control of inventory management systems with bounded batch size. Applied Mathematical Modelling 66, 296-304. https://doi.org/10.1016/j.apm.2018.09.010
  • Çakır, O. & Canbolat, M.S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367–1378. doi: https://doi.org/10.1016/j.eswa.2007.08.041
  • Fan J. & Wang, G. (2018). Joint optimization of dynamic lot and warehouse sizing problems. European Journal of Operational Research, 267, 849-854. doi: https://doi.org/10.1016/j.ejor.2017.12.019
  • Guerriero, F., Musmanno, R., Pisacane, O., & Rende, F. (2013). A mathematical model for the multi-levels product allocation problem in a warehouse with compatibility constraints. Applied Mathematical Modelling, 37(6), 4385-4398. doi: https://doi.org/10.1016/j.apm.2012.09.015
  • Gül, G., Erol, B., Öngelen, B., Eser, S., Çetinkaya, Ç., Özmutlu, H., Özmutlu, S., Gökçedağlıoğlu, M., & Erhuy, C. (2016). Ambar Depolama Maksimizasyonu [Maximization of warehouse storage]. Endüstri Mühendisliği Dergisi, 27(4), 26-38. Retrieved from: https://www.mmo.org.tr/sites/default/files/5_2.pdf
  • Kırış, Ş. (2013). Multi-Criteria Inventory Classification by Using a Fuzzy Analytic Network Process (ANP) Approach. Informatica, 24(2), 199-217.
  • Kılıç, A., Aygün, A., Aydın Keskin G., & Baynal, K. (2014) Çok Kriterli ABC Analizi Problemine Farklı Bir Bakış Açısı: Bulanık Analitik Hiyerarşi Prosesi - İdeal Çözüme Yakınlığa Göre Tercih Sıralama Tekniği [A Variant Perspective To Multi-Criteria ABC Analysis Problem: Fuzzy Analytic Hierarchy Process Technique For Order Preference By Similarity To Ideal Solution]. Pamukkale University Journal of Engineering Sciences, 20(5), 179-188. doi: 10.5505/pajes.2014.18894 Özdemir, A. & Özdemir, A. (2006). Talep Tahminlemesinde Kullanılan Yöntemlerin Karşılaştırılması: Seramik Ürün Grubu Firma Uygulaması [Comparison of the Methods Used in Demand Forecasting: Ceramic Product Group Company Application], Ege Academic Review, 6 (2), 105-114.
  • Rakesh, V. & Adil, G. K. (2015). Layout optimization of a three-dimensional order picking warehouse. IFAC-Papers online, 48(3),1155-1160. doi: https://doi.org/10.1016/j.ifacol.2015.06.240
  • Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 33(3), 695-700. doi: https://doi.org/10.1016/j.cor.2004.07.014
  • Rimiene, K. (2008). The design and operation of warehouse. Economics and Management, 136-137.
  • Roodbergen, K., Vis, I., & Taylor, G. (2015). Simultaneous determination of warehouse layout and control policies. International Journal of Production Research, 53(11), 3306-3326. doi: https://doi.org/10.1080/00207543.2014.978029
  • Wutthisirisart, P., Sir, M., & Noble, J. (2015). The two-warehouse material location selection problem. International Journal of Production Economics, 170, 780-789. doi: https://doi.org/10.1016/j.ijpe.2015.07.008
  • Yang, L., & Feng, Y. (2006). Fuzzy multi-level warehouse layout problem: new model and algorithm. Journal of Systems Science and Systems Engineering, 15(4), 493-503. doi: 10.1007/s11518-006-5017-3.
  • Zhang, G., & Nishi, T. (2017). An integrated strategy for a production planning and warehouse layout problem: Modeling and solution approaches. Omega, 68, 85-94. doi: https://doi.org/10.1016/j.omega.2016.06.005
  • Zhang, G., Xue J. & Lai, K. (2002). A class of genetic algorithms for multiple-level warehouse layout problems. International Journal of Production Research, 40(3), 731-744. doi: https://doi.org/10.1080/00207540110093909
  • Zhou, W., Piramuthu S., & Chu, F. (2017). RFID-enabled flexible warehousing. Decision Support Systems 98, 99-112. doi: https://doi.org/10.1016/j.dss.2017.05.002