SAYISAL SİNYAL İŞLEME SİSTEMİ İLE YÜKSEK ÇÖZÜNÜRLÜKLÜ RADYASYON SPEKTROSKOPİSİNİN ELDE EDİLMESİ VE KALİBRASYONU - OBTAINING HIGH-RESOLUTION RADIATION SPECTROSCOPY BY DIGITAL SIGNAL PROCESSING SYSTEM AND ITS CALIBRATION

SAYISAL SİNYAL İŞLEME SİSTEMİ İLE YÜKSEK ÇÖZÜNÜRLÜKLÜ RADYASYON SPEKTROSKOPİSİNİN ELDE EDİLMESİ VE KALİBRASYONUBu çalışmada, 137Cs radyoaktif kaynağının gama ışın enerji spektrumu, sayısal sinyal işleme sistemi ile yüksek çözünürlüklü olarak elde edilmiştir. Kurulan bilgisayar destekli ölçüm sistemiyle, radyasyon kaynaklarından alınan analog sinyal, 14 bit çözünürlükte, 100MS/s gerçek zamanlı sayısal sinyale dönüştürülerek toplanmıştır. 137Cs radyasyon kaynağının yüksek çözünürlüklü spektroskopisi, yazılan LabviewTM tabanlı DSP algoritmalar ile geliştirilmiştir. PCI 5122 sayısallaştırıcı kart iki giriş kanalına sahip olduğu için, kalibrasyonsuz sintilasyon detektörü, doğruluğu bilinen kalibrasyonlu sintilasyon detektörü ile karşılaştırılmıştır. Bu kalibrasyon işlemi, kalibrasyonlu sintilasyon detektörünün doğru değerlerine göre kalibrasyonsuz sintilasyon detektörün gösterge değerleri arasındaki sapmayı bulmaya yardım eder.OBTAINING HIGH-RESOLUTION RADIATION SPECTROSCOPY BY DIGITAL SIGNAL PROCESSING SYSTEM AND ITS CALIBRATIONIn this study, the gamma-ray energy spectrum of 137Cs radioactive source was obtained as high resolution using digital signal processing system. Obtained analog signals from radiation source were collected converting to digital signal via established computer aided measurement system which both 14-bit resolution and 100MS/s real time sampling rate. The high resolution spectroscopy of 137Cs radiation source were improved by LabviewTM algorithms. Since the PCI 5122 card has two channels, uncalibrated scintillation detector is compared with precisely known correctness of calibrated scintillation detector. This calibration process helps to find the deviation of the indications relating to uncalibrated scintillation detector with regard to true value of calibrated scintillation detector

-

In this study, the gamma-ray energy spectrum of 137Cs radioactive source was obtained as high resolution using digital signal processing system. Obtained analog signals from radiation source were collected converting to digital signal via established computer aided measurement system which both 14-bit resolution and 100MS/s real time sampling rate. The high resolution spectroscopy of 137Cs radiation source were improved by LabviewTM algorithms. Since the PCI 5122 card has two channels, uncalibrated scintillation detector is compared with precisely known correctness of calibrated scintillation detector. This calibration process helps to find the deviation of the indications relating to uncalibrated scintillation detector with regard to true value of calibrated scintillation detector

___

  • [1] Ellis, W.H. & He, Q. Computer-Based Nuclear Radiation Detection and Instrumentation Teaching Laboratory System. IEEE Transactions on Nuclear Science, Vol. 40, No. 4, pp. 675-679, ISSN 0018- 9499 (1993).
  • [2] Abdel-Aal, R.E. Simulation and analysis of nuclear physics instrumentation using the LabVIEW graphical programming environment. The Arabian Journal for Science and Engineering, Vol. 18, No. 3, (July 1993), pp. 365-382, ISSN 1319-8025 (1993).
  • [3] Kirichenko, A.F., Sarwana, S., Mukhanov O.A., Vernik I.V., Zhang, Y., Kang, J. & Vogt, J.M. RSFQ Time Digitizing System. IEEE Transactions on Applied Superconductivity, Vol. 22, No. 1, pp. 978-981, ISSN 1051-8223 (2001).
  • [4] Esposito, B., Riva, M., Marocco D. & Kaschuck Y. A Digital Acquisition and Elaboration System for Nuclear Fast Pulse Detection. Nuclear Instruments and Methods in Physics Research A, Vol. 572, pp. 355-357, ISSN 0168-9002 (2007).
  • [5] Tłaczala, W. Virtual instrumentation in physics, In: Handbook of Measuring System Design, P. Sydeman & R. Thorn, (Eds.), 695-701, Wiley, ISBN 0-470-02143-8, Hoboken, NJ, USA (2005).
  • [6] Tłaczala, W., Grajner, G. & Zaremba, M. Virtual Laboratory with Simulated Nuclear Experiments. IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 8, pp. 1766-1770, ISSN 0018-9456 (2008).
  • [7] Belli, F., Esposito, B., Marocco, D., Riva, M., Kaschuk, Y., Bonheure, G. & JET EFDA contributors A method for digital processing of pile-up events in organic scintillators. Nuclear Instruments and Methods in Physics Research A, Vol. 595, pp. 512-519, ISSN 0168-9002 (2008).
  • [8] Drndarevic, V. & Jevtic, N. A versatile, PCbased gamma ray monitor. RadiationProtection Dosimetry, Vol. 129, No. 4, pp. 478-480, ISSN 1742-3406 (2008).
  • [9] Drndarević, V. A very low-cost alpha-particle spectrometer. Measurement Science and Technology, Vol. 19, 057007, 5pp, ISSN 0957- 0233 (2008).
  • [10] Yan, J., Liu, R., Li, Ch., Jiang, L., Lu, X., Zhu, T., Wang, M., Wen, Z. & Lin, J. LabVIEW-based auto timing counts virtual instrument system with ORTEC 974 Counter/Timer.Nuclear Science and Techniques, Vol. 20, pp. 307-311, ISSN 1001-8042 (2009).
  • [11] Moreno, E., Reyes, P. & de la Rosa, J.M. Time-resolved fluorescence spectroscopy with LabView, In: LabVIEW - Modeling, Programming and Simulations, Riccardo de Asmundis, ISBN 978-953-307-521-1, InTech, Rijeka, Croatia (2011).
  • [12] Krasilnikov, V., Marocco, D., Esposito, B., Riva, M. & Kaschuck, Y. Fast pulse detection algorithms for digitized waveforms from scintillators. Computer Physics Communications, Vol. 182, pp. 735-738, ISSN 0010-4655 (2011).
  • [13] Pechousek, J., Prochazka, R., Prochazka, V. & Frydrych, J. Virtual instrumentation technique used in the nuclear digital signal processing system design: Energy and time measurement test. Nuclear Instruments and Methods in Physics Research A, Vol. 637, pp. 200-205, ISSN 0168-9002 (2011).
  • [14] General requirements for the competence of testing and calibration laboratories, ISO/IEC 17025, Second Edition (2005)