Photobactericidal and photochromic textile materials realized by embedding of advantageous dye using sol-gel technology

The presented study reports on the application of the dye Rose Bengal on textiles to achive photobactericidal properties and spirooxazine type photochromic dye for achieving photochromic properties by using different sol-gel based coating agents. Photochromic dyes changes rapidly and reversibly from colorless form to colored state when activated by ultraviolet irradiation. Color changing technology offers unique design opportunities to the designer and also has an opportunity to obtain camouflage and UV-protective textiles. The obtained phtochromic textiles were tested by means of UPF (Ultraviolet Protection Factor) and ΔE color difference after UV irradiation.  After UV irradiation photochromic samples showed UPF values higher than 30 and this effect was developed with concentration of the dye. The prepared photobactericidal textiles were investigated by means of UV/Vis-spectroscopy, scanning electron microscopy and by testing the antimicrobial activity against the bacteria Bacillus subtilis. The purpose of this treatment was to realize photobactericidal materials which enabled antimicrobial activity while illuminated with visible light. An antimicrobial effect of the fabrics treated with Rose Bengal was observed with and without light exposition. However in case of illumination this effect was significantly stronger indicating a certain photobactericidal effect. This photobactericidal effect strongly depended on the kind of sol-gel coating agent used for embedding of the dyestuff onto the textile

___

  • Hench, L.L.; West, J.K. The sol-gel process. Chem. Rev. 1990, 90, 33-72.
  • Mahltig, B.; Haufe, H.; Leisegang, T.; Gutmann, J.S.; Textor, T. Verminderte Röntgentransmission durch beschichtete Textilien. Melliand Textilber. 2011, 92, 36-39.
  • Mahltig, B.; Textor, T. Nanosols and Textiles, World Scientific, Singapore, 2008.
  • Mahltig, B.; Haufe, H.; Böttcher, H. Functionalisation of textiles by inorganic sol–gel coatings. J. Mater. Chem. 2005, 15, 4385-4398.
  • Mahltig, B.; Swaboda, C.; Roessler, A.; Böttcher H. Functioalising wood by nanosol application. J. Mater. Chem. 2008, 18, 3180-3192.
  • Juenger, M.; Ladwig, A.; Staecker, S.; Arnold, A.; Kramer, A.; Daeschlein, G.; Panzig, E.; Haase, H.; Heising, S. Efficacy and safety of silver textile in the treatment of atopic dermatitis. Current Medical Research and Opinion 2006, 22, 739-750.
  • Ovington, L.G. Battling bacteria in wound care. Home Healthc. Nurse 2001, 19, 622-630.
  • Yin, H.Q.; Langford, R.; Burrell, R.E. Comparative evaluation of the antimicrobial activity of ACTICOAT antimicrobial barrier dressing. J. Burn Care Rehabil. 1999, 20, 195-200.
  • Blaker, J.J.; Nazhat, S.N.; Boccacini, A.R. Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials 2004, 25, 1319-1329.
  • Zhang, F.; Wu, X.; Chen, Y.; Lin, H. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fiber. Polym. 2009, 10, 496-501.
  • Bajpai, M.; Gupta, P.; Bajpai, S.K. Silver (I) ions loaded cyclodextrin-grafted-cotton fabric with excellent antimicrobial property. Fiber. Polym. 2010, 11, 8-13.
  • Schmidt, F.; Fischer, A.; Haufe, H.; Leisegang, T.; Mahltig, B. Solvothermally prepared copper modified TiO2 composite sols. In Textiles: Types, Uses and Production Methods; El Nemr, A., Editor; Nova Science Publishers Inc, 2012; 439-466.
  • Mahltig, B.; Fiedler, D.; Simon, P. Silver‐containing sol–gel coatings on textiles: antimicrobial effect as a function of curing treatment. J. Textile Institute 2011, 102, 739-745.
  • Sauvet, G.; Dupond, S.; Kazmierski, K.; Chojnowski, J. Biocidal polymers active by contact - Synthesis of polysiloxanes with biocidal activity. J. Appl. Polym. Sci. 2000, 75, 1005-1012.
  • Mahltig, B.; Haufe, H. Biozide-Wirkstoffe in der Matrix. Farbe & Lack 2010, 116/3, 27-31.
  • Daoud, A.A.; Xin, J.H. Nucleation and growth of anatase crystallites on cotton fabrics at low temperatures. J. Am. Ceram. Soc. 2004, 87, 953-955.
  • Bonnett, R.; Buckley, D.G.; Burrow, T.; Galia, A.B.B.; Saville, B.; Songca, S.P. Photobactericidal materials based on porphyrins and phthalocyanines. J. Mater. Chem. 1993, 3, 323-324.
  • Miller, J.S. Rose bengal-sensitized photooxidation of 2-chlorophenol in water using solar simulated light. Water Research 2005, 39, 412-422.
  • Gryglik, D.; Miller, J.S.; Ledakowicz, S. Singlet molecular oxygen application for 2-chlorophenol removal. Journal of Hazardous Materials 2007, 146, 502-507.
  • Hamblin, M.R.; Hasan, T. Photodynamic therapy: a new antimicrobial approach to infectious disease?. Photochem. Photobiol. Sci. 2004, 3, 436-450.
  • Schäfer, M.; Schmitz, C.; Facius, R.; Horneck, G.; Milow, B.; Funken, K.-H.; Ortner, J. Systematic Study of Parameters Influencing the Action of Rose Bengal with Visible Light on Bacterial Cells: Comparison Between the Biological Effect and Singlet‐Oxygen Production. Photochemistry and Photobiology 2000, 71, 514-523.
  • Rossoni, R.D.; Junqueira, J.C.; Santos, E.L.S.; Costa, A.C.B.; Jorge, A.O.C. Comparison of the efficacy of Rose Bengal and erythrosin in photodynamic therapy against Enterobacteriaceae Lasers Med. Sci. 2010, 25, 581-586.
  • Lamberts, J.J.M.; Neckers, D.C. Rose bengal derivatives as singlet oxygen sensitizers. Tetrahedron 1985, 41, 2183-2190.
  • Guo, Y.; Rogelj, S.; Zhang, P. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria. Nanotechnology 2010, 21, 7.
  • Schaap, A.P.; Thayer, A.L.; Blossey, E.C.; Neckers, D.C. Polymer-based sensitizers for photooxidations. J. Am. Chem. Soc. 1975, 97, 3741-3745.
  • Mahltig, B.; Böttcher, H.; Knittel, D.; Schollmeyer, E. Light fading and wash fastness of dyed nanosol-coated textiles. Textile Res. J. 2004, 74, 521-527.
  • Yin, Y.; Wang, C.; Wang, C. An evaluation of the dyeing behavior of sol–gel silica doped with direct dyes. J. Sol-Gel Sci. Technol. 2008, 48, 308-314.
  • Nedelcev, T.; Krupa, I.; Lath, D.; Spirkova, M. The leaching of Rhodamine B, Naphthol Blue Black, Metanil Yellow and Bismarck Brown R from silica deposits on polyester and viscose textiles. J. Sol-Gel Sci. Technol. 2008, 46, 47-56.
  • Panitz, J.-C.; Geiger, F. Leaching of the anthraquinone dye solvent blue 59 incorporated into organically modified silica xerogels. J. Sol-Gel Sci. Technol. 1998, 13, 473-477.
  • Dima, A.; Della Corte, F.; Rendina, I.; Dima, M.O. Bistable hybrids in sol–gel technology for switching devices. Microelectronics Journal 2007, 38, 1169-1174.
  • Mahltig, B.; Knittel, D.; Schollmeyer, E.; Böttcher, H., Incorporation of triarylmethane dyes into sol–gel matrices deposited on textiles. J. Sol-Gel Sci. Technol. 2004, 31, 293-297.
  • Mahltig, B.; Textor, T. Combination of silica sol and dyes on textiles. J. Sol-Gel Sci. Technol. 2006, 39, 111-118.
  • Girard, P.M.; Francesconi, S.; Pozzebon, M.; Graindorge, D.; Rochette, P.; Drouin, R. & Sage, E. UVA-induced damage to DNA and proteins: direct versus indirect photochemical processes. J. Phys.: Conf. Ser. 2011, 261 012002.
  • Dubrovski, P.D.; Golob, D. Effects of woven fabric construction and color on ultraviolet protection. Text. Res. J. 2009, 79, 351–359.
  • He, Y.Y.; Huang, J.L.; Chignell, C.F. Delayed and sustained activation of extracellular signal-regulated kinase in human keratinocytes by UVA implications in carcinogenesis. J. Biol. Chem. 2004, 279, 53867–53874.
  • Cheng, T.; Lin, T.; Fang, J.; Brady, R. Photochromic Wool Fabrics from a Hybrid Silica Coating. Text. Res. J. 2007, 77, 923-928.
  • Mahltig, B.; Gutmann, E.; Meyer, D.C.; Reibold, M.; Bund, A.; Böttcher, H. Thermal preparation and stabilization of crystalline silver particles in SiO2-based coating solutions. J. Sol-Gel Sci. Technol. 2009, 49, 202-208.
  • Mahltig, B.; Haufe, H.; Muschter, K.; Fischer, A.; Kim, Y.H.; Gutmann, E.; Reibold, M.; Meyer, D.C.; Textor, T.; Kim, C.W.; Kang, Y.S. Silver Nanoparticles in SiO2 Microspheres – Preparation by Spray Drying und Use as Antimicrobial Agent. Acta Chim. Slov. 2010, 57, 451-457.
  • Mahltig, B.; Fiedler, D.; Fischer, A.; Simon, P. Antimicrobial coatings on textiles–modification of sol–gel layers with organic and inorganic biocides. J. Sol-Gel Sci. Technol. 2010, 55, 269-277.
  • Mahltig, B.; Textor, T. Silver containing sol-gel coatings on polyamide fabrics as antimicrobial finish-description of a technical application process for wash permanent antimicrobial effect. Fibers and Polymers 2010, 11, 1152-1158.
  • Trepte, J.; Böttcher, H. Improvement in the leaching behavior of dye-doped modified silica layers coated onto paper or textiles. J. Sol-Gel Sci. Technol. 2000, 19, 691-694.
  • Mahltig, B.; Böttcher, H.; Rauch, K.; Dieckmann, U.; Nitsche, R.; Fritz, T. Optimized UV protecting coatings by combination of organic and inorganic UV absorbers. Thin Solid Films 2005, 485, 108-114.
  • Böttcher, H.; Mahltig, B.; Sarsour, J.; Stegmaier, T. Qualitative investigations of the photocatalytic dye destruction by TiO2-coated polyester fabrics. J. Sol-Gel Sci. Technol. 2010, 55, 177-185.
  • Wehlow, A. Echtheitsprufungen von Farbungen and Drucken. Textilpraxis 1988, 43, 277-279.
  • Bilski, P.; Dabestani, R.; Chignell, C.F. Influence of cationic surfactant on the photoprocesses of eosine and rose bengal in aqueous solution. J. Phys. Chem. 1991, 95, 5784-5791.
  • Ahmad, M.; King, T.A.; Ko, D.-K.; Cha, B.H.; Lee, J. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys. D: Appl. Phys. 2002, 35, 1473-1476.