BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS

BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİTuzluluk, kurak ve yarı kurak alanları tehdit eden en önemli problemler arasındadır. Tarımsalalanlarda tuzluluğun artması, toprağın yapısını bozmakta, bitkilerin ürün kalitesi ve verimliliğini önemliölçüde sınırlandırmaktadır. Tuz stresi, bitkilerde çesitli gelisim süreçlerinin yanında morfolojik, hücresel,fizyolojik ve moleküler seviyede pek çok aksaklıklara neden olmaktadır. Bitkiler, tuz stresine yanıt olarakçesitli tolerans stratejileri gelistirmektedir. Tuz stresine yanıt çerçevesinde, metabolizma yan ürünü olarakolusan reaktif oksijen türlerini yok eden çesitli enzimatik olmayan antioksidanlar ile antioksidan enzimlerinaktivitelerinin arttırılması, bitki büyüme düzenleyicilerinin ve ozmolit sentezinin tesvik edilmesi, fotosentetikyolun değistirilmesi, gen ifadesi ve SOS yolu ile iyon alımının düzenlenmesi, stresle ilgili genlerin aktiveedilerek transkripsiyon faktörlerinin sentezlenmesi ve stres proteinlerinin üretiminin tesvik edilmesi önemlitolerans stratejileridir. Bu derlemede, tuz stresinin etkileri ve tuzluluğa karsı bitkilerin gelistirdikleri toleransstratejileri tanıtılacaktır.TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THEEFFECTS OF SALT STRESSSalinity is one of the major problems that threat arid and semi-arid areas. Increased salinity inthe agricultural areas disturbs the structure of soil, significantly limits product quality and productivity ofplants. Salt stress causes many problems at morphological, cellular, physiological and molecular levels and invarious development processes in plants. The plants develop various tolerance strategies in response to saltstress. With in the context of salt stress, increasing non-enzymatic antioxidants and antioxidant enzymeactivities scavenging ROS (Reactive Oxygen Species) as a by product of metabolism, inducing osmolitebiosynthesis and various plant growth regulators, changing the way of the photosynthesis, regulating geneexpression and ion uptake via SOS pathway, and activating stress-related genes to promote the synthesis oftranscription factors and production of stress proteins are important tolerance strategies. In this review, theeffects of salt stress and tolerance strategies developed by plants to salinity are described.

Bitki Tuz Stresi Etkilerine Karşı Geliştirdikleri Çeşitli Tolerans Stratejileri

-
Keywords:

-,

___

  • Gürel A., and Avcıoğlu, R., ‘‘Bitkilerde Strese Dayanıklılık Fizyolojisi’’, 21. bölüm, Editörler: Özcan, S., Gürel, E., Babaoğlu, M., ‘‘Bitki Biyoteknolojisi II, Genetik Mühendisliği ve Uygulamaları’’,
  • Yayınları, 308-313, (2001). Üniversitesi
  • Vakfı [2] Kalefetoğlu, T., and Ekmekçi, Y., ‘‘Bitkilerde kuraklık stresinin etkileri ve dayanıklılık mekanizmaları (Derleme)’’, G.Ü., Fen Bilimleri Dergisi, 18 (4): 723-740 (2005).
  • Mahajan, S., and Tuteja, N., ‘‘Cold, salinity and drought stress: an overview’’, Archives of Biochemistry and Biophysics, 444: 139-158 (2005).
  • Ekmekçi, E., Apan, M., and Kara, T., ‘‘Tuzluluğun bitki gelişimine etkisi’’, OMÜ, Ziraat Fakültesi Dergisi, 20 (3): 118-125 (2005).
  • Munns, R., ‘‘Comparative physiology of salt and water stress’’, Plant, Cell and Environment, 25: 239-250 (2002).
  • Glenn, E.P., Brown, J.J., Khan, M.J., ‘‘Mechanisms of Salt Tolerance in Higher Plants’’, Edited by Basra, A.S., and Basra, R.K., ‘‘Mechanisms of Environmental Stress Resistance in Plants’’, Harwood Academic Publishers, 83- 110, (1997).
  • Bressan, R.A., ‘‘Stres Fizyolojisi’’, Editörler: Taiz, L., Zeiger, E., Çeviri Editörü: Türkan İ., ‘‘Bitki Fizyolojisi’’, Palme Yayıncılık, Ankara, 591-620 (2008).
  • Koca, H., Bor, M., Özdemir, F., and Türkan, İ., ‘‘The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame
  • Experimental Botany, 60: 344-351 (2007). Environmental
  • and [9] Mugdal, V., Madaan, N., and Mudgal, A., ‘‘Biochemical mechanisms of salt tolerance in plants: a review’’, International Journal of Botany, 6 (2):136-143 (2010).
  • Chinnusamy, V., Jagendorf, A., and Zhu, J.- K., ‘‘Understanding and improving salt tolerance in plants’’, Crop Science, 45: 437-448 (2005).
  • Parida, A.K., and Das, A.B., ‘‘Salt tolerance and salinity effects on plants: a review’’, Ecotoxicology and Environmental Safety, 60: 324- 349 (2005).
  • Kuşvuran, Ş., Yaşar, F., Abak, K., and Ellialtıoğlu, Ş., ‘‘Tuz stresi altında yetiştirilen tuza tolerant ve duyarlı Cucumis sp.’nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler’’, Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 18 (1): 13-20 (2008).
  • Erdal, İ., Türkmen, Ö., and Yıldız, M., ‘‘Tuz stresi altında yetiştirilen hıyar (Cucumis sativus L.) fidelerinin gelişimi ve kimi besin maddeleri içeriğindeki
  • gübrelemenin etkisi’’, Yüzüncü Yıl Ün., Ziraat Fakültesi, Tarım Bilimleri Dergisi, 10 (1): 25-29 (2000) üzerine
  • potasyumlu [14] Parvaiz, A., and Satyawati, S., ‘‘Salt stress and phyto-biochemical responses of plants-a review’’, Plant Soil Environment, 54 (3): 89-99 (2008).
  • Ashraf, M., and Haris, P.J.C., ‘‘Potential biochemical indicators of salinity tolerance in plants’’, Plant Science, 166: 3-16 (2004).
  • Amini, F., Ehsanpour, A.A., Hoang, Q.T., and Shin, J.S., ‘‘Protein pattern changes in tomato under in vitro salt stress’’, Russian Journal of Plant Physiology, 54 (4): 464-471 (2007).
  • Ashraf, M., ‘‘Some important physiological selection criteria for salt tolerance in plants’’, Flora, 199: 361-376 (2004).
  • Rahman, S., Matsumuro, T., Miyake, H., and Takeoka, Y., ‘‘Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.)’’, Plant Prod. Sci., 3 (4): 422-429 (2000).
  • Parida, A.K., Das, A.B., and Mittra, B., ‘‘Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Brugueira parviflora chloroplasts’’, Photosynthetica, 41 (2): 191-200 (2003).
  • Yakıt, S., and Tuna, A.L., ‘‘Tuz stresi altındaki mısır bitkisinde (Zea mays L.) stres parametreleri üzerine Ca, Mg ve K’un etkileri’’, Akdeniz Üniversitesi, Ziraat Fakültesi Dergisi, 19 (1): 59-67 (2006).
  • Öncel, I., and Keleş, Y., ‘‘Tuz stresi altındaki buğday genotiplerinde büyüme, pigment içeriği ve çözünür madde kompozisyonunda değişmeler’’, C.Ü., Fen-Edebiyat Fakültesi, Fen Bilimleri Dergisi, 23 (2): 8-16 (2002).
  • Ali, Y., Aslam, Z., Ashraf, M.Y., and Tahir, G.R., ‘‘Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment’’,
  • Environmental Science and Technology, 1 (3): 221-225 (2004). Journal
  • of [23] Yıldız, M., Terzi, H., Cenkçi, S., Arıkan Terzi, E.S., and Uruşak, B., ‘‘Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri’’, Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 1 (1): 1-33 (2010).
  • ] Gomez-Canedas, A., Arbona, V., Jacas, J., Primo-Millo, E., and Talon, M, ‘‘Absisic acid reduced leaf abscission and increases salt tolerance in citrus plants’’, J. Plant Growth Regul., 21: 234- 240 (2003). [25] Arzani, A., ‘‘Improwing salinity tolerance in crop plants: a biotechnological review’’, In Vitro Cell Dev. Biol.-Plant, 44: 373- 383 (2008).
  • Sultana, N., Ikeda, T., and Itoh, R., ‘‘Effect of NaCl salinity on photosynthesis and dry matter accumulation in devoloping rice grains’’, Environmental and Experimental Botany, 42: 211- 220 (1999).
  • Koyro, H.-W., ‘‘Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago cronopus (L.)’’, Environmental and Experimental Botany, 56: 136-146 (2006).
  • Meloni, D.A., Oliva, M. A., Martinez, C. A.,
  • and Cambraia, J., ‘‘Photosynthesis and activity of superoxide dismutase and glutathione reductase in cotton under salt stress’’, Environmental and Experimental Botany, 49: 69-76 (2003).
  • Apse, M.P., Blumwald, E., ‘‘Engineering salt tolerance in plants’’, Current Opinion in Biotechnology, 13: 146-150 (2002).
  • Altınışık, M., ‘‘Serbest oksijen radikalleri ve antioksidanlar’’, ADÜ Tıp Fakültesi, Biyokimya AD., Aydın, 2000.
  • Yaşar, F., Ellialtıoğlu, Ş., Özpay, T., and Uzal, Ö., ‘‘Tuz stresinin karpuzda (Citrullus lanatus (Thunb.) Mansf.) antioksidatif enzim (SOD, CAT, APX ve GR) aktivitesi üzerine etkisi’’, Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 18 (1): 61-65 (2008).
  • Zhu, J-K., ‘‘Understanding and improving salt tolerance in plants’’, Crop Science, 45: 437-448 (2005).
  • Neto, A.D.A., Prisco, J.T., Eneas-Filho, J., Abreu, C.E.B., and Gomes-Filho, E., ‘‘Effect of salt stress on antioxidatif enzymes and lipid peroxidation in leaves and roots of salt-tolerant and
  • Environmental and Experimental Botany, 56: 87- 94 (2006). maize
  • genotypes’’, [34] Gechev, T.S., Breusegem, F.V., Stone, J.M., Denev, I., and Laloi, C., ‘‘Reactive oxygen species as signals that modulate plant stress responses and programmed cell death’’, BioEssays, 28: 1091- 1101 (2006).
  • Hernandez, J.A., Jimenez, A., Mullineaux, P., and Sevilla, F., ‘‘Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences’’, Plant, Cell and Environment, 23: 853-862 (2000).
  • Shalata, A., and Tal, M., ‘‘The effect of salt stress on lipit peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt tolerant
  • Physiologia Plantarum, 104: 169-174 (1998).
  • pennellii’’ [37] Holmberg, N., and Bülow, L., ‘‘Improwing stress tolerance in plants by gene transfer’’, Trends in Plant Science, 3 (2): 61-66 (1998).
  • Gupta, S.D., ‘‘Plasma mebrane ultrastructure in embryogenic cultures of orchardgrass during NaCl stress’’, Biologia Plantarum, 51 (4): 759-763 (2007).
  • Mansour, M.M.F., and Salama, K.H.A, ‘‘Cellular basis of salinity tolerance in plants’’, Environmental and Experimental Botany, 52: 113- 122 (2004).
  • Salama, K.H.A., Mansour, M.M.F., Ali, F.Z.M., and Abou-hadid, A.F., ‘‘NaCl-induced, changes in plasma membrane lipids and proteins of Zea mays L. cultivars differing in their response to salinity’’, Acta Physiol Plant, 29: 351-359 (2007). [41] Ghoulam, C., Foursy, A., and Fares, K., ‘‘Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjusment in five sugar beet cultivars’’, Environmental and Experimental Botany, 47: 39- 50 (2002).
  • Borsani, O., Valpuesta, V., and Botella, M.A., ‘‘Devoloping salt tolerant plants in a new century: a molecular biology approach’’, Plant Cell, Tissue and Organ Culture, 73: 101-115 (2003).
  • Türkan, I., and Demiral, T., ‘‘Recent developments in understanding salinity tolerance’’ Environmental and Experimental Botany, 67: 2-9 (2009).
  • Smirnoff, N., ‘‘Plant resistance to environmental stress’’, Current Opinion in Biotechnology, 9: 214-219 (1998).
  • Yokoi, S., Bressan, R.A., and Hasegawa, P.M., ‘‘Salt stress tolerance of plants’’, JIRCAS Working Report, 25-33 (2002).
  • Sairam, R.K., and Tyagi, A., ‘‘Physiology and molecular biology of salinity stress tolerance in plants’’, Current Science, 86 (10): 407-421 (2004). [47] Munns, R., ‘‘Genes and salt tolerance: bringing them together’’, New Phytologist, 167: 645-663 (2005).
  • Flowers, T.J., Garcia, A., Koyama, M., and Yeo, A.R., ‘‘Breeding for salt tolerance in crop plants-the role of molecular biology’’, Acta Physiologia Plantarum, 19 (4): 427-433 (1997)
  • Niknam, V., Bagherzadeh, M., Ebrahimzadeh, H., and Sokhansanj, A., ‘‘Effect of NaCl on biomass and contents of sugars, proline and proteins in seedlings and leaf explants of Nicotiana tabacum grown in vitro’’, Biologia Plantarum, 48 (4): 613-614(2004).
  • Mohamed, A.N., Rahman, M.H., Alsadon, A.A., and Islam, R., ‘‘Accumulation of proline in NaCl-treated callus of six tomato (Lycopersicon esculentum Mill.) cultivars’’, Plant Tissue Cult. & Biotech., 17 (2): 217-220 (2007).
  • Wang, W., Vinocur, B., and Altman, A., ‘‘Plant responses to drougth, salinity and extreme temperatures: towards genetic engineering for stress tolerance’’, Planta, 218: 1-14 (2003).
  • Winicow, I., ‘‘New molecular approaches to improving salt tolerance in crop plants’’, Annals of Botany, 82: 703-710 (1998).
  • Vashisht, A.A., and Tuteja, N., ‘‘Stress responsive DEAD-box helicases: a new pathway to engineer plant stres tolerance’’, Journal of Photochemistry and Photobiology B: Biology, 84: 150-160 (2006).
  • Meng, C., Cai, C., Zhang, T., and Guo, W., ‘‘Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L.’’, Plant Science, 176: 352-359 (2009). [55] Wang, Y., Gao, C., Liang, Y., Wang, C., Yang, C., and Liu, G., ‘‘A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants’’, Journal of Plant Physiology, 167: 222-230 (2010).
  • Kaur, N., and Gupta, A.K., ‘’Signal transduction pathways under abiotic stresses in plants’’, Current Science, 88 (11): 1771-1780 (2005).
  • Agarwal, P.K., Agarwal, P., Reddy, M.K., and Sopory, S.K., ‘‘Role of DREB transcription factors in abiotic and biotic stress tolerance in plants’’, Plant Cell Rep, 25: 1263-1274 (2006).
  • Geliş Tarihi: 10/03/2011
  • Kabul Tarihi:10/06/2011
Celal Bayar Üniversitesi Fen Bilimleri Dergisi-Cover
  • ISSN: 1305-130X
  • Başlangıç: 2005
  • Yayıncı: Manisa Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

THE INVESTIGATION OF GEOMETRICAL PROPERTIES OF 2,5 PYRIDINEDICARBOXYLIC ACID, SYNTHESIS AND VIBRATIONAL PROPERTIES OF ITS SOME METAL HALOGEN COMPOUNDS - 2,5 PİRİDİNDİKARBOKSİLİK ASİT MOLEKÜLÜNÜN GEOMETRİK VE TİTREŞİMSEL ÖZELLİKLERİNİN ARAŞTIRILMASI VE BAZ

Ahmet ATAÇ, Evren ÇULCULAR, Fehmi BARDAK, M. Ali ÇİPİLOĞLU

MEVCUT BETONARME HASTANE BİNASININ FARKLI ZEMİN SINIFLARINDA BURULMA DAVRANIŞI - TORSIONAL BEHAVIOR OF AN EXISTING HOSPITAL BUILDING IN DIFFERENT SITE CLASSES

Ali DEMİR, Muhiddin BAĞCI, Duygu Dönmez DEMİR

HARDY-LITTLEWOOD MAKSİMAL OPERATÖRÜ ÜZERİNDEKİ ÇALIŞMALARIN İNCELENMESİ - AN OVERVIEW OF HARDY-LITTLEWOOD MAXIMAL OPERATOR

Ferat DEMİR, Serhat Berat EFE

2,5 PİRİDİNDİKARBOKSİLİK ASİT MOLEKÜLÜNÜN GEOMETRİK VE TİTREŞİMSEL ÖZELLİKLERİNİN ARAŞTIRILMASI VE BAZI METAL HALOJEN KOMPLEKSLERİNİN SENTEZLENMESİ

Ahmet ATAÇ, Evren ÇULCULAR, Fehmi BARDAK, M. Ali ÇİPİLOĞLU

ÖĞRETMEN ADAYLARININ ELEŞTİREL DÜŞÜNME BECERİLERİ: MUĞLA ÜNİVERSİTESİ ÖRNEĞİ - CRITICAL THINKING DISPOSITIONS OF PRE-SERVICE TEACHER: MUĞLA UNIVERSITY EXAMPLE

Şule AYCAN, Nahide Zeynep ŞENLİK, Özlem BALKAN

SÜT VE SÜT ÜRÜNLERİNİN FONKSİYONEL ÖZELLİKLERİ - FUNCTIONAL PROPERTIES OF MILK AND DAIRY PRODUCTS

A. Kemal SEÇKİN, Emrah BALADURA

FARKLI ALÜMİNYUM ALAŞIMLARININ TIG KAYNAK YÖNTEMİ İLE KAYNATILMASI VE MEKANİK ÖZELLİKLERİNİN İNCELENMESİ - WELDING OF DIFFERENT ALUMINIUM ALLYOS BY TIG WELDING METHOD AND THE ANALYSIS OF THEIR MECHANICAL CHARACTERISTICS

Mehmet AYVAZ, Hakan ÇETİNEL

BİTKİLERİN TUZ STRESİ ETKİLERİNE KARSI GELİSTİRDİKLERİ TOLERANS STRATEJİLERİ - TOLERANCE STRATEGIES DEVELOPED BY PLANTS TO THE EFFECTS OF SALT STRESS

Emel YILMAZ, A. Levent TUNA, Betül BÜRÜN