Bakır ve Grafit İçeren Demir Esaslı Malzemelerin İndüksiyon ile Sinterlenmesinde Sinterleme Sıcaklığının Malzeme Dayanımına Etkisi

Toz Metal parçaların üretiminin en önemli işlem basamaklarından biri sinterlemedir. Sinterleme aynı zamanda önemli derecede enerji ve zaman tüketiminin olduğu bir ısıl işlemdir. Bu çalışmada ana amaç, aynı dayanım değerleri hedeflenerek, indüksiyon ile sinterleme işlemi vasıtası ile sinterleme sıcaklığının düşürülmesidir. Çalışmada, toz metal numunelerin üretiminde, % 3 Cu, % 0,5 Grafit içeren demir tozu kullanılmıştır. İndüksiyon ile sinterlemenin etkilerinin anlaşılması amacı ile numuneler geleneksel olarak sinterlenerek, üretilen numunelerin mekanik özellikleri ve mikro yapıları karşılaştırılmıştır. Yapılan çalışmalar sonucunda, daha az sürede daha düşük sıcaklıklarda geleneksel sinterlemeye göre daha iyi mekanik özellik değerleri elde edilmiştir.

___

  • [1] Jang, G.B., Hur, M.D., Kang, S.S. A study on the deve-lopment of a substitution process by powder metal-lurgy in automobile parts. Journal of Materials Proces-sing Technology. 2000, 100, 110-115.
  • [2] Kalpakjian, S., Manufacturing Engineering and Technology 2nd Ed. Wesley, Reading, MA. Eb, 1992, 1197 s.
  • [3] Randall M. G., Editörler; Durlu, N., Sarıtaş, S., Tür-ker, M., 2007, Toz ve Parçacıklı Malzeme İşlemleri, TMMD, Ankara/Türkiye,
  • [4] German, R. M., Çeviri H. Özkan GÜLSOY, Sinterle-me Teorisi ve Uygulamaları, Nobel Yayınevi, Anka-ra/Türkiye, 2014. 554 s.
  • [5] Atik, E., Çavdar, U., 2011, Geleneksel ve Hızlı Sinter-leme Yöntemleri, CBÜ Soma Meslek Yüksekokulu Tek-nik Bilimler DergisiCilt 1, Sayı:15.
  • [6] Shon, I.J., Jeong, I.K., Ko, I.., Doh, J.M., Woo, K.D. Sintering behavior and mechanical properties of WC–10Co, WC–10Ni and WC–10Fe hard materials produ-ced by high-frequency induction heated sintering. Else-vier Science, Ceramics International. 2009, 35:339-344.
  • [7] Abbasi B. J., Zakeri, M., Tayebifard, S. A., High frequ-ency induction heated sintering of nanostructured Al2O3–ZrB2 composite produced by MASHS tech-nique, Ceramics International. 2014, 40-7;9217–9224.
  • [8] Shon, I.J., Jo, S.H., Doh, J.M., Yoon, J.K., Park, B.J. Mechanical synthesis and rapid consolidation of na-nostructured FeAl–Al2O3 composites by high-frequency induction heated sintering. Ceramics Inter-national. 2012, 38:7: 635-639.
  • [9] Kim, H.C., Shon, I.J., Munir, Z.A. Rapid sintering of ultra-fine WC-10 wt% Co by high-frequency induction heating. Journal of Materials Science. 2005, 40, 2849–2854.
  • [10] Kim, H.C., Shon, I.J., Yoon, J.K., Lee, S.K., Munir, Z.A. One step synthesis and densification of ultra-fine WC by high-frequency induction combustion. Interna-tional Journal of Refractory Metals and Hard Materials. 2006, 24, 202–209.
  • [11] Kim, H.C., Shon, I.J., Yoon, J.K. , Doh, J.M., Munir, Z.A. Rapid sintering of ultrafine WC–Ni cermets. Inter-national Journal of Refractory Metals and Hard Materi-als. 2006, 24, 427–431.
  • [12] Kim, H.C., Yoon, J.K., Doh, J.M., Ko, I.Y., Shon, I.J. Rapid sintering process and mechanical properties of binderless ultra fine tungsten carbide. Materials Science and Engineering: A. 2006, 435– 436, 717–724.
  • [13] Kim, H. C., Park, H. K., Jeong, I. K., Ko, I. Y., Shon, I., J. Sintering of binderless WC–Mo2C hard materials by rapid sintering process. Ceramics International. 2008, 34, 1419–1423.
  • [14] Kim H. C., Oh, D. Y., Shon, I., J. Synthesis of WC and dense WC–xvol. %Co hard materials by high-frequency induction heated combustion method. Inter-national Journal of Refractory Metals & Hard Materials. 2004, 22, 41–49.
  • [15] Kim, H.C., Shon, I.J., Munir, Z.A. Rapid sintering of ultra-fine WC-10 wt% Co by high-frequency induction heating Journal of Materials Science. 2005, 40, 2849–2854.
  • [16] Kim, H.C., Shon, I.J., Yoon, J.K., Lee, S.K., Munir, Z.A. One step synthesis and densification of ultra-fine WC by high-frequency induction combustion. Interna-tional Journal of Refractory Metals and Hard Materials. 2006, 24, 202–209.
  • [17] Kim, H.C., Shon, I.J., Yoon, J.K. , Doh, J.M., Munir, Z.A. Rapid sintering of ultrafine WC–Ni cermets Inter-national Journal of Refractory Metals and Hard Materi-als. 2006, 24, 427–431.
  • [18] Kim, S.W., Khalil, K.A., Cockcroft, S.L., Hui, D., Lee, J. H. Sintering behavior and mechanical properties of HA-X% mol 3YSZ composites sintered by high frequ-ency induction heated sintering. Composites: Part B. 45, 2013, 1689–1693.
  • [19] Kim, H. C., Park, H. K., Jeong, I. K., Ko, I. Y., Shon, I., J. Sintering of binderless WC–Mo2C hard materials by rapid sintering process. Ceramics International. 2008 34, 1419–1423.
  • [20] Kim H. C., Oh, D. Y., Shon, I., J. Synthesis of WC and dense WC–xvol.%Co hard materials by high-frequency induction heated combustion method. Inter-national Journal of Refractory Metals & Hard Materials. 2004, 22, 41–49.
  • [21] Doh, J.M., Jeong, I. K., Kim, H. C., Ko, I. Y. Shon, I. J. ,Yon I. J. Rapid sintering of ultra-fine WC and WC-Co hard materials by high frequency induction heated sintering and their mechanical properties. Metals And Materıals Internatıonal. 2007, 13, 1, 39-45.
  • [22] Park, H.K., Shon, I.J., Yoon, J.K., Doh, J.M., Ko, I.Y., Munir, Z.A. Simutaneous synthesis and consolidation of nanostructured NbSi2-Si3N4 composite from mec-hanically activated powders by high frequency induc-tion-heated combustion. Elsevier, Journal of alloys and compounds. 2008, 461, 560-564.
  • [23] Khalil, K.A., Kim, S.W. Mechanical wet-milling and subsequent consolidation of ultra-fine Al2O3-(ZrO2+Y2O3) bioceramics by using high-frequency induction heat sintering. Transactions of Nonferrous Metals Society of China. 2007, 17, 21-26.
  • [24] Kim, H.C., Shon, I. J., Munir, Z. A. Rapid sintering of ultra-fine WC-10 wt % Co by high frequancy induc-tion heating. International Journal of Refractory metals & HardMaterials. 2006, 24, 427-431.
  • [25] Kim, H.C., Oh, D.Y., Shon, I.J. Sintering of nanop-hase WC-15 vol. %Co hard metals by rapid sintering process. Refractorry Metals & Hard Materials. 2004, 22, 197-203.
  • [26] Mazaheri, M., Zahedi, A.M., Haghighatzadeh, M., Sadrnezhaad, S.K., Sintering of titania nanoceramic: Densification and grain growth. Ceramics Internatio-nal. 2009, 35, 685–691.
  • [28] Kim C. H., Yoon J. K., Doh J.M., Ko I. Y., Shon I. J. Rapid sintering process and mechanical properties of binderless ultra fine tungsten carbide. Materials Science and Engineering A. 2006, 435–436, 717–724.
  • [29]Abbasi B. J., M. Zakeri,.S. A. Tayebifard , High frequency induction heated sintering of nano structu-red Al2O3-ZrB2 composite produced by MASHS tech-nique Ceramics Internatioanal 40 (2014) pp. 9217-9224.
  • [29] Khalil, A.K., Almajid, A.A., Effect of high-frequency induction heat sintering conditions on the microstruc-ture and mechanical properties of nanostructured magnesium/hydroxyapatite nanocomposites. Materials and Design. 2012, 36, 58–68.
  • [30] Çivi,C.; Atik, E.,2012, Comparison Of Effect Of Induction And Classical Sintering To Mechanical Pro-perties Of Powder Metal Components, AIP Conference Proceedings Volume:1476, pp: 119-122.
  • [31] Çivi, C., Akpınar, G., Atik, E., 2013, Effects of the sintering parameters on mechanical properties of fe-based powder metal parts, International Porous Powder Materials Symposium (PPM 2013), İzmir Tur-key, Procedings Book, pp 180-185.
  • [32] Çivi, C., Atik, E., 2012, Fırında Klasik Olarak Ve İndüksiyonla Sinterleme Yöntemiyle Sinterlenerek Üre-tilen Toz Metal Burçların Mekanik Özelliklerinin Karşı-laştırılması, Bursa OTEKON 2012, 04 – 05 Haziran 2012, 6. Otomotiv Teknolojileri Kongresi Bildiri Kitap-çığı, Bursa, TURKEY.
  • [33] Çavdar, U., Atik, E., 2013, Determination sintering time and temperature parameters for the medium frequency induction sintering of iron based powder metal compacts, Wulfenia Journal, Vol:20 No:1, 2013, pp 273-283.
  • [34] Çivi, C., Demir Esaslı T/M Parçaların Düşük Fre-kanslı İndüksiyonla Sinterlenmesinde Sürenin Etkisi, Yüksek Lisans Tezi, Celal bayar Üniversitesi Makine Mühendisliği Bölümü Konstrüksiyon ve İmalat Anabi-lim Dalı, Haziran 2011.
  • [35] Çivi,C., Tahrali, N., Atik, E., 2014, “Relıabılıty Of Mechanıcal Propertıes Of Inductıon Sıntered Iron Based Powder Metal Parts” Materials & Design 53, 383–397.
  • [36] Çivi, C.; Akpınar, G.; Atik, E. Mechanical properties of conventionally and induction sintered Fe-based powder metal bushings. Materials Testing. 2015, Vol. 57, No. 6, 518-523.
  • [37] Çivi, C., Toz Metal Parçaların Orta Ve Düşük Fre-kanslı İndüksiyon İle Sinterlenmesinde Sinterleme Parametrelerinin Mekanik Özelliklere Etkisinin İnce-lenmesi, Doktora Tezi, Celal bayar Üniversitesi Makine Mühendisliği Bölümü Konstrüksiyon ve İmalat Anabi-lim Dalı, Şubat 2016.
  • [38] Rol, H., Johnson, P. K. Perspective in powder metal-lurgy volume 3:İron Powder Metallurgy. Kempton, Springer-Science+Business Media, B.V. 1968, 379 s.
  • [39] Narasimhan, K. S. Sintering of powder mixtures and the growth of ferrous powder metallurgy. Materials Chemistry and Physics, 2001, Volume 67, Issues 1 -3, 56-65.
  • [40] Zarebski, K., Putyra, P. Iron powder-based graded products sintered by conventional method and by SPS. Advanced Powder Technology, 2015, 26, 401–408.
  • [41] Hryha, E., Dudrova, E., Nyborg, L. On-line control of processing atmospheres for proper sintering of oxi-dation-sensitive PM steels. Journal of Materials Proces-sing Technology, 2012, 212. 977–987.
  • [42] Çavdar, U., Ünlü, B. S., Pinar, A. M., Atik, E., Mec-hanical properties of heat treated iron based compacts. Materials and Design. 2015, 65, 312–317.
  • [43] Babakhani , A., Haerian, A., Ghambri , M. Effect of heat treatment, lubr icant and sinter ingtemperature on dry sliding wear behavior of medium alloyed chro-mium PM steels. Journal of Materials Processing Tech-nology, 2008, 204, 192–198.