Bitki Savunma Sistemlerinde Hormonal Sinyal Moleküller ve Çapraz İletişimleri

Bitkiler oldukça kompleks olan savunma sistemleri sayesinde patojen atağını algılar, sınırlandırır ve karşı atağa geçebilirler. Bitki savunma sistemlerinin aktive olabilmesi için reseptörlerden bitki hücresi genomuna sinyal transdüksiyonun olması gereklidir. Bu yolda savunma sistemini tetikleyen salisilik asit (SA), jasmonik asit (JA) ve etilen (ET) gibi hormonal sinyal moleküllerin varlığı ve bitkide tüm savunma tepkilerini koordine eden karmaşık bir sinyal ağının bulunduğu kanıtlanmıştır. Bu sinyallerin etkileşimi, bitkinin hem lokal hem de sistemik olarak, doğru savunma tepkilerini oluşturmasını sağlamaktadır.

Bitki Savunma Sistemlerinde Hormonal Sinyal Moleküller ve Çapraz İletişimler(Hormonal Signal Molecules and Cross Communications in Plant Defense Systems)

Keywords:

-,

___

  • Bent, A.F., Innes, R.W., Ecker., J.R. ve Staskawicz, B.J. ‘Disease Development in Ethylene Insentive Arabidopsis thaliana infected with virulent and avirulent Pseduomanas and Xanthomonas pat- hogens’, Mol. Plant Microbe Interact., 5 (1992), pp. 372-378.
  • Bolwell, G.P. ‘Role of Active Oxygen Species and NO in Plant Defense Responses’, Curr. Opin. Plant Biol., 2 (1999), pp. 287-294.
  • Clarke, J.D., Volko, S.M., Ledford, H., Ausubel, F.M. ve Dong, X. ‘Roles of Salicylic Acid, Jasmonic Acid and Ethylene in cpr-Induced Resistance in Arabidopsis’, Plant Cell, 12 (2000), pp. 2175- 2190.
  • Conrath, U., Pieterse, C.M.J. ve Mauch-Mani, B. ‘Priming in Plant Pathogen Interactions’, Trends Plant Sci., 7 (2002), pp. 210-216.
  • Despres, C., De Long, C. Glaze, S., Liu, E. ve Fobert, P.R. ‘The Arabidopsis NPR1/NIM1 Protein Enhances the Binding Activity of a Subgroup of the TGA Family of bZIP Transcription Factors’, Plant Cell, 12 (2000), pp. 279-290.
  • Devoto, A. ve Turner, J.G. ‘Regulation of Jasmonate-Mediated Plant Responses in Arabidopsis’, Annals of Botany, 92 (2003), pp. 329-337.
  • Devoto, A. ve Turner, J.G. ‘Jasmonate-Regulated Arabidopsis Stress Signalling Network’, Physiol. Plant., 123 (2005), pp. 161-172.
  • Dong, X. ‘Salicylic Acid, Jasmonic Acid, Ethylene, and Disease Resistance in Plants’, Curr. Opin. Plant Biol., 1 (1998), pp. 316-323.
  • Du, H. ve Klessig, D.F. ‘Identification of a Soluble High-Affinity Salicylic Acid-Binding Protein in Tobacco’, Plant Physiology, 113 (1997), pp. 1319-1327.
  • Ecker, J.R. ‘The Ethylene Signal Transduction Pathway in Plants’, Science, 268 (1995), pp. 667-675.
  • Ellis, J., Dodds, P. ve Pryor, T. ‘Structure, Function and Evolution of Plant Disease Resistance Genes’, Curr. Opin. Plant Biol., 3 (2002), pp. 278-284.
  • Ellis, C. ve Turner, J.G. ‘The Arabidopsis Mutant cev1 Has Constitutively Active Jasmonate and Ethylene Signal Pathways and Enhanced Resistance To Pathogens’, Plant Cell, 13 (2001), pp. 1025-1033.
  • Flor, H.H. ‘The Complementary Genetic Systems in Flax and Flax Rust’, Adv. Genet, 8 (1956), pp. 29-54.
  • Gaffney, T. Friderich, L., Vernooji, B., Negrotto, D., Nye, G., Ukness, S., Ward, E., Kessmann, H., ve Ryals, J. ‘Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance’, Sci- ence, 261 (1993), pp. 754-756.
  • Glazebrook, J. ‘Genes Controlling Expression of Defense Responses in Arbidopsis-2001 Status’, Curr. Opin. Plant Biol., 4 (2001), pp. 301-308.
  • Glazebrook, J., Chen, W.J., Estes, B., Chang, H-S, Nawrath, C., Metraux, J.P., Zhu, T. ve Katagiri, F. ‘Topology of the Network Integrating Salicylate and Jasmonate Signal Transduction Derived from Global Expression Phenotyping’, Plant J., 34 (2003), pp. 217-228.
  • Guo, H. ve Ecker, J. R. ‘The Ethylene Signaling Pathway: New Insights’, Curr. Opin. Plant Biol., 7 (2004), pp. 40-49.
  • Gupta, V., Willits, M.G. ve Glazebrook, J. ‘Arabidopsis thaliana EDS4 Contributes to Salicylic Acid (SA)-Dependent Expression of Defense Responses: Evidence for Inhibition of Jasmonic Acid Signaling by SA’, Mol. Plant Microbe Interact., 13 (2000), pp. 503-511.
  • Hammond-Kosack, K.E ve Jones, J.D. ‘Inducible Plant Defense Mechanisms and Resistance Gene Function’, Plant Cell, 8 (1996), pp. 1773- 1791.
  • Heath, M.C. Nimchuk, Z.L., ve Xu, H. ‘Plant Nuclear Migrations as Indicators of Critical Interactions Between Resistant or Succeptible Cowpea Epidermal Cells and Invasion Hyphae of Rust Fungus’, New Phytol., 35(1997), pp. 689-700.
  • Hoffman, T, Schmidt, J.S., Zheng, X. ve Bent, A.F.’Isolation of Ethylene-Insensitive Soybean Mutants That are Altered in Pathogen Susceptibility and Gene-For-Gene Disease Resistance’, Plant Physiol., 119 (1999) pp. 935-949.
  • Howe, G.A.ve Schilmiller, A.L. ‘Oxylipin Metabolism in Response to Stress’, Current Opinion in Plant Biology, 5 (2002), pp. 230-236.
  • Kessler, A. ve Baldwin, I.T. ‘Plant Response to Insect Herbivory: The Emerging Molecular Analysis’ Annu. Rev. Plant Biol., 53 (2002), pp. 299-328.
  • Kinkema, M., Fan, W. ve Dong, X. ‘Nuclear Localization of NPR1 is Required for Activation of PR Gene Expression’, Plant Cell, 12 (2000), pp. 2339-2350.
  • Kloeak, A.P., Verbsky, M.L., Sharma, S.B., Schoelz, J.E., Vogel, J., Klessig, D.F. ve Kunkel, B.N. ‘Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine insensitive (coi1) Mutation Occurs Through two Distinct Mechanisms’, Plant J., 26 (2001), pp. 509-522.
  • Kunkel, B. N. ve Brooks, D. M. ‘Cross Talk Bettween Signaling Pathways in Pathogen Defense’, Curr. Opin. Plant Biol., 5 (2002), pp. 325-331.
  • Lawton, K.A., Potter, S.L., Uknes, S. ve Ryals, J. ‘Acquired Resistance Signal Transduction in Arabidopsis is Ethylene Independent’, Plant Cell, 6 (1994), pp. 581-588.
  • Li, C.Y., Liu, G.H., Xu, C.C., Lee, G.I., Bauer, P., Ling, H.Q., Ganal, M.W. ve Howe, G.A. ‘The Tomato Supressor of Prosystemin-Mediated Responses Gene Encodes a Fatty Acid Desaturase Required for the Biosynthesis of Jasmonic Acid and the Production of a Systemic Wound Signal for Defense gene Expression’, Plant Cell, 15 (2003), pp. 1646-1661.
  • Li, J., Brader, G. ve Palva, E.T. ‘The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense’, Plant Cell., 16 (2004), pp. 319-331.
  • Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J. ve Solano, R. ‘ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant Defense’, Plant Cell, 15 (2003), pp. 165-178.
  • Malamy, J., Carr, J.P, Klessig, D.F. ve Raskin, I. ‘Salicylic Acid: A likely Endogenous Signal in the Resistance Response of Tobacco to Viral Infection’ Science, 250 (1990), pp. 1002-1004.
  • Martin, G.B. ‘Functional Analysis of Plant Disease Resistance Genes and Their Downstream Effectors’, Curr. Opin. Plant Biol., 2 (1999), pp. 273-279.
  • Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N. ve Ohashi, Y. ‘Antagonistic Effect of Salicylic Acid and Jasmonic Acid on the Expression of Pathogenesis-Related (PR) Protein Genes in Wounded Mature Tobacco Leaves’, Plant Cell Physiol., 39 (1998), pp. 500-507.
  • Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., Shibuya, N., Kodama, O., Murofushi, N. ve Omori, T. ‘Involment of Jasmonic Acid in Elicitor-Induced Phytoalexin Production in Suspension-Cultured Rice Cells’, Plant Physiol., 110 (1996), pp. 387-392.
  • Norman-Setterblad, C., Vidal, S., Palva, E. T. ‘Interacting Signal Pathways Control Defense Gene Expression in Arabidopsis in Response to Cell Wall-Degrading Enzymes from Erwinia carotovora’, Mol. Plant Microbe Interact., 13 (2000), pp. 430-438.
  • Penninckx, I.A., Thomma, B.P., Buchala, A., Metraux, J.P. ve Broekart, W.F. ‘Concomitant Activation of Jasmonate and Ethylene Response Pathways is Required for Induction of a Plant Defensin Gene in Arabidopsis’, Plant Cell, 10 (1998), pp. 2103-2113.
  • Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J. ve Parker, J.E. ‘Arabidopsis Map Kinase 4 Negatively Regulates Systemic Acquired Resistance’, Cell, 103 (2000), pp. 1111-1120.
  • Pieterse, C.M.J., Ton, J. ve Van Loon, L.C. ‘Cross-Talk Between Plant Defence Siganlling Pathways: Boost or Burden?’, AgBiotechNet, 3 (2001), ABN 068.
  • Pieterse, C.M.J. ve Van Loon, L.C. ‘Salicylic Acid-Independent Plant Defence Pathways’, Trends Plant Sci., 4 (1999), pp. 52-58.
  • Pieterse, C.M.J. ve Van Loon, L.C. ‘NPR1: The Spider in the Web of Induced Resistance Signalling Pathways’, Curr. Opin. Plant Biol., 7 (2004), pp. 456-464.
  • Pieterse, C.M.J., Van Wees, S.C.M., Ton, J., Van Pelt, J.A. ve Van Loon, L.C. ‘Signalling in Rhizobacteria-Induced Systemic Resistance in Arabidopsis thaliana’, Plant Biol., 4 (2002), pp. 535-544.
  • Pieterse, C.M.J., Van Wees, S.C., Van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J., ve Van Loon, L.C. ‘A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis’, Plant Cell, 10 (1998), pp. 1571-1580.
  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y. ve Hunt, D. ‘Systemic Acquired Resistance’, Plant Cell, 8 (1996), pp. 1809-1819.
  • Ryan C.A. ‘The Systemin Signalling Pathway: Differential Activation of Plant Defensive Genes’, Biochimica et Biophysica Acta, 1477 (2000), pp. 112-121.
  • Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P, Richmond, T., Somerville, S.C. ve Manners, J.M. ‘Coordinated Plant Defense Responses in Arabidopsis Revealed by Microarray Analysis’, Proc. Natl. Acad. Sci. USA., 97 (2000), pp. 11655-11660.
  • Somssich, I.E ve Hahlbrock, K. ‘Pathogen Defense in Plants- A Paradigm of Biological Complexity’, Trends Plant Sci., 3 (1998), pp. 86-90.
  • Spoel, S.H., Koorneeef, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.P, Brown, R.ve Kazan, K. ‘NPR1 Modulates Cross-Talk Between Salicylate- and Jasmonate-Dependent Defense Pathways Trough a Novel Function in the Cytosol’, Plant Cell, 15 (2003), pp. 760-770.
  • Sticher, L., Mauch-Mani, B. ve Metraux, J.P. ‘Systemic Acquired Resistance’, Annu Rev Phytopathol., 35 (1997), pp. 235-270.
  • Thomma, B.P.H.J., Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A. ve Broekaert, W.F. ‘Separate Jasmonate-Dependent and Salicylate-Dependent Defense ResponsePathways in Arabidopsis’, Proc. Natl. Acad. Sci., USA, 95 (1998), pp. 15107-15111.
  • Thomma, B.P.H.J., Penninckx, I.A.M.A., Cammue, B.P.A. ve Broekaert, W.F. ‘The Complexity of Disease Signalling in Arabidopsis’, Curr. Opin. Immunol, 13 (2001), pp. 63-68
  • Ton, J., Van Pelt, J.A., Van Loon, L.C. ve Pieterse, C.M.J. ‘Differential Effectiveness of Salicylate- Dependent and Jasmonate-Dependent Induced Resistance in Arabidopsis’, Mol. Plant Microbe Interact, 15 (2002), pp. 27-34.
  • Van Loon, L.C. ve Van Strien, E.A. ‘The Families of Pathogenesis Related Proteins, Their Activities, and Comparative Analysis of PR-1 Type Proteins’, Physiol. Mol. Plant Pathol., 55 (1999), pp. 85-97.
  • Xu, Y., Chang, P.L.C., Liu, D., Narasimhan, M.L., Kashchandra, G.R., Hasegawa, P.M. ve Bressan, R.A. ‘Plant Defense Genes are Synergistically Induced by Ethylene and Methyl Jasmonate’, Plant Cell, 6 (1994), pp. 1077-1085.
  • Yu, D. Liu, Y. Fan, B., Klessig, D.F. ve Chen, Z. ‘Is the High Basal Level of Salicylic Acid Important for Disease Resistance in Potato?’ Plant Physiology, 115 (1997), pp. 343-349.
  • Zhang, S. ve Klessig, D.F. ‘Salicylic Acid Activates a 48 kD MAP Kinase in Tobacco’, Plant Cell, 9 (1997), pp. 809-824.
  • Zhou, J.M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J. ve Klessig, D.F. ‘NPR1 Differantly Interacts with Members of the TGA/OBF Family of Transcription Factors that Bind an Element of the PR-1 Gene Required for Induction by Salicylic Acid’, Mol. Plant Microbe Interact., 13 (2000), pp. 191-202.