İKİ KADEMELİ LİÇ İŞLEMİ İLE ATIK ALKALİ PİL TOZUNDAN ÇİNKO VE MANGAN KAZANILMASI

Bu çalışmada, atık alkali pil tozlarındaki çinko ve manganın seçimli çözünürlüğü iki kademeli liç yönteminin uygulanmasıyla incelenmiştir. Birinci liç kademesinde, pil tozundaki çinko sodyum hidroksit çözeltileri kullanılarak çözündürülmüştür. Mangan içeren katı kalıntı filtrasyonla çözeltiden ayrıldıktan sonra ikinci liç kademesinde kullanılmıştır. İkinci liç işleminde melas içeren sülfürik asit çözeltileri liç ajanı olarak kullanılmıştır. Her bir liç basamağında çözelti derişimi, sıcaklık, karıştırma hızı ve katı/sıvı oranının çinko ve mangan çözünmesine olan etkileri araştırılmıştır. Elde edilen bulgular deney parametrelerinin çinko ve mangan çözünmesi üzerinde önemli bir etkiye sahip olduğunu göstermiştir. Her iki metal için de çözünme veriminin çözücü derişimi, sıcaklık ve karıştırma hızının artmasıyla, katı/sıvı oranının ise azalmasıyla arttığı gözlenmiştir. Sodyum hidroksit derişiminin 1.5 mol/L, reaksiyon sıcaklığının 40 °C, katı/sıvı oranının 2/500 g/mL, karıştırma hızının 500 dev/ dk ve reaksiyon süresinin 120 dk olduğu deney şartlarında atık pil tozundaki çinkonun %77’sinin çözündüğü belirlenmiştir. Sülfürik asit derişimi, reaksiyon sıcaklığı, katı/sıvı oranı, karıştırma hızı ve reaksiyon süresi sırasıyla 1 mol/L, 50 °C, 2/500 g/mL, 500 dev/dk ve 120 dk iken liç kalıntısındaki manganın %85’inin çözündüğü bulunmuştur.

RECOVERY OF ZINC AND MANGANESE FROM WASTE ALKALINE BATTERY POWDER BY TWO-STAGE LEACHING PROCESS

In this work, the selective dissolution of zinc and manganese in the waste alkaline battery powders was investigated by applying two-stage leaching method. In the first-stage of leaching, zinc in the battery powder was dissolved using NaOH solutions. The solid residue containing manganese was separated from the solution by filtration and used in the second leaching step. Sulfuric acid solutions containing molasses was used as leaching agent in the second-stage leaching treatment. In each leaching step, the effects of solution concentration, temperature, stirring speed and solid to liquid ratio on the dissolution of zinc and manganese were examined. The findings obtained showed that the experimental parameters had a significant effect on the dissolution of zinc and manganese. It was observed that the dissolution efficiency for both metal increased with an increase in the solution concentration, temperature and stirring speed, and with a decrease in the solid to liquid ratio. At the experimental conditions of a sodium hydroxide concentration of 1.5 mol/L, a reaction temperature of 40 °C, a solid to liquid ratio of 2/500 g/mL, a stirring speed of 500 rpm, and a reaction time of 120 min., it was determined that 77% of zinc in waste battery powder was dissolved. While concentration of sulfuric acid, temperature, solid to liquid ratio, stirring speed, and reaction time were 1.5 mol/L, 50 °C, 2/500 g/mL, 500 rpm, and 120 min. respectively, it was found that 85% of manganese in the leach residue was dissolved.

___

  • Bernardes, A.M., Espinosa, D.C.R., Tenorio, J.A.S., 2004. Recyling of Batteries: A Review of Current Processes and Technologies. Journal of Power Sources, 130, 291-298.
  • Buzatu M., Saceanu S., Petrescu M.I., Ghica G.V., Buzatu T., 2014. Recovery of Zinc and Manganese from Spent Batteries by Reductive Leaching in Acidic Media. Journal of Power Sources, 247, 612-617.
  • Demirkıran, N., Turhan Özdemir, G.D., 2019. A Kinetic Model for Dissolution of Zinc Oxide Powder Obtained from Waste Alkaline Batteries in Sodium Hydroxide Solutions. Metallurgical and Materials Transactions B, 50B, 491-501.
  • De Souza, C.C.B.M., De Oliveria, D.C., Tenorio, J.A.S., 2001. Characterization of Used Alkaline Batteries Powder and Analysis of Zinc Recovery by Acid Leaching. Journal of Power Sources, 103, 120-126.
  • El Hazek, M.N., Lasheen T.A., Helal A.S., 2006. Reductive Leaching of Manganese from Low Grade Sinai Ore in HCl Using H2 O2 as Reductant. Hydrometallurgy, 84, 187-191.
  • El Nadi, Y.A., Daoud, J.A., Aly, H.F., 2007. Leaching and Separation of Zinc from the Black Paste of Spent MnO2 -Zn Dry Cell Batteries. Journal of Hazardous Materials, 143, 328-334.
  • Gega, J., Walkowiak, W., 2011. Leaching of Zinc and Manganese from Used up Zinc-Carbon Batteries Using Aqueous Sulfuric Acid Solution. Physicochemical Problems of Mineral Processing, 46, 155-162.
  • Gupta, C.K., Murkherjee, T.K., 1990. Hydrometallurgy in Extraction Processes, CRC Press, USA.
  • Gülensoy, H., 1984. Kompleksometrinin Esasları ve Kompleksometrik Titrasyonlar. Fatih Yayınevi, İstanbul.
  • Jha, M.K., Kumar, V., Singh, R.J., 2001. Review of Hydrometallurgical Recovery of Zinc from Industrial Wastes, Resources. Conservation and Recycling, 33, 1-22.
  • Lashenn, T.A., El-Hazek, M.N., Helal, A.S., ElNagar, W., 2009. Recovery of Manganese Using
  • Molasses as Reductant in Nitric Acid Solution. International Journal of Mineral Processing, 92, 109-114.
  • Nayl, A.A., Ismail, I.M., Aly, H.F., 2011. Recovery of Pure MnSO4 .H2 O by Reductive Leaching of Manganese from Pyrolusite Ore by Sulfuric Acid and Hydrogen Peroxide. International Journal of Mineral Processing, 100, 116-123.
  • Rabah, M.A, El-Sayed, A.S., 1995. Recovery of Zinc and Some of Its Valuable Salts from Secondary Resources and Wastes. Hydrometallurgy, 37, 23-32.
  • Rosenqvist, T., 2004. Principles of Extractive Metallurgy. Tapir Academic Press, USA.
  • Sadeghi, S.M., Vanpeteghem, G., Neto, I.F.F., Soares, H.M.V.M., 2017. Selective Leaching of Zn from Spent Alkaline Batteries Using Environmentally Friendly Approaches. Waste Management, 60, 696-705.
  • Sayılgan, E., Kükrer, T., Ferella, F., Akcıl, A., Veglio, F., Kitis, M., 2009. Reductive Leaching of Manganese and Zinc from Spent Alkaline and Zinc-Carbon Batteries in Acidic Media. Hydrometallurgy, 97, 73-79.
  • Sayılgan, E., Kükrer, T., Yiğit N.O., Civelekoğlu, G., Kitis, M., 2010. Acidic Leaching and Precipitation of Zinc and Manganese from Spent Battery Powders using Various Reductants. Journal of Hazardous Materials, 173, 137-143.
  • Senanayake, G., Shin, S.M., Senaputra, A., Winn, A., Pugaev, D., Avraamides, J., Sohn J.S., Kim, D.J., 2010. Comparative Leaching of Spent Zinc-Manganese-Carbon Batteries Using Sulphur Dioxide in Ammoniacal and Sulfuric Acid Solution. Hydrometallurgy, 105, 36-41.
  • Seyed Ghasemi, S.M., Azizi, A., 2017. Investigation of Leaching Kinetics of Zinc from a Low-Grade Ore in Organic and Inorganic Acids. Journal of Mining and Environment, 8, 579-591.
  • Shalchian, H., Rafsanjani-Abbasi, A., VahdatiKhaki, J., Babakhani, A., 2015. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning. Metallurgical and Materials Transactions B, 46B, 38-47.
  • Shin, S.M., Senanayake, G., Sohn, J., Kang, J., Yang D, Kim, T., 2009. Separation of Zinc from Spent Zinc-Carbon Batteries by Selective Leaching with Sodium Hydroxide. Hydrometallurgy, 96, 349-353.
  • Veloso, L.R.S., Rodrigues, L.E.O.C., Ferreira, D.A, Magalhaes F.S., Mansur, M.B., 2005. Development of a Hydrometallurgical Route for the Recovery of Zinc and Manganese from Spent Alkaline Batteries. Journal of Power Sources, 152, 295-302.
  • Venkatachalam, S., 1998. Hydrometallurgy Narosa Publishing House, India.
  • Xionga, S., Lia, X., Liua, P., Haoa, S., Haoa, F., Hydrometallurgy. Yinb, Z., Liua, J., 2018. Recovery of Manganese from Low Grade Pyrolusite Ore by Reductively Acid Leaching Process Using Lignin as a Low Cost Reductant. Minerals Engineering, 125, 126-132.
  • Xu, W., Liang, L., Zhu, M. 2015. Determination of Sugars in Molasses by HPLC Following SolidPhase Extraction. International Journal of Food Properties, 18, 547-557.
  • Yamaguchi, T., Nagano, H., Murai, R., Sugimori, H., Sekiguchi, C., Sumi, I., 2018. Development of Mn Recovery Process from Waste Dry Cell Batteries. Journal of Material Cycles Waste Management, 20, 1909-1917.