Argümantasyon Tabanlı Sorgulayıcı Araştırma Yönteminin Yazmaya Etkisinin Ötesinde: Öğrencilerin Bilişsel ve Duyuşsal Beklentilerinin İncelenmesi

Bu çalışmanın amacı, Argümantasyon Tabanlı Sorgulayıcı Araştırma (ATSA) yöntemine göre tasarlanmış laboratuvar uygulamalarına katılan öğretmen adaylarının bilişsel ve duyuşsal beklentilerinin karşılanıp karşılanmadığını incelemektir. Novak’ın anlamlı öğrenme teorisine göre, anlamlı öğrenmenin gerçekleşmesi için, öğrencilerin konuyla ilgili ön bilgisinin olması, yeni bilginin öğrencilere anlamlı bir şekilde verilmesi ve öğrenme sürecinde öğrencilerin aktif olarak rol alması gerekir. Novak, insanların bu deneyimlerini bilişsel (düşünme), duyuşsal (hissetme) ve psikomotor (yapma) olmak üzere üçe ayırmıştır.  Bu bilişsel, duyuşsal ve psikomotor deneyimlerin başarılı şekilde bütünleşmesi ise anlamlı öğrenme ile sonuçlanmaktadır. Bu çalışmada, öğretmen adaylarının fen laboratuvarındaki bilişsel ve duyuşsal beklentilerinin, deneyimleri tarafından karşılanıp karşılanmadığını Galloway ve Bretz (2015) tarafından geliştirilen Laboratuvarda Anlamlı Öğrenme Ölçeği ile belirlemek amacıyla zayıf deneysel desen kullanılmıştır. Üçüncü sınıf fen bilgisi öğretmen adayları 11 hafta boyunca düzenli derslerinin bir parçası olarak ATSA etkinliklerine katılmıştır. Bu etkinlikler aracılığıyla öğretmenler adayları, bilimsel bir araştırma tasarlama, delillere dayalı argüman üretme, bilimsel rapor yazma ve akranlarının raporlarını eleştirel olarak değerlendirme gibi çeşitli bilimsel etkinliklerde bulunma şansına sahip olmuşlardır. Çalışmanın sonuçları,  ATSA öğretim yönteminin öğretmen adaylarının bilişsel ve duyuşsal boyutlardaki beklentilerini karşılayabildiğini göstermiştir.

Beyond the Writing Aspect of Argument-Driven Inquiry: Investigating Students’ Cognitive and Affective Expectations

The purpose of the present study was to investigate whether pre-service teachers’ cognitive and affective expectations were met after participation of lab investigations that were designed based on the ADI instructional model. Based on Novak’ theory of learning, when the students get responsibilities to connect new knowledge with existing one, the students stand active role in generating knowledge through experiences. Novak categorized these human experiences as cognitive (thinking), affective (feeling), and psychomotor (doing). The successful consolidation of the cognitive, affective and psychomotor experiences then result in meaningful learning. In order to determine whether the cognitive and affective expectations of pre-service teachers are fulfilled by their experiences in a science laboratory course, weak experimental design was utilized in this study. Third grade pre-service science teachers attended ADI activities as a part of their regular course through 11 weeks. Through ADI activities pre- service teachers had a chance to engage variety of scientific activities such as designing investigations, arguing from evidence, writing scientific reports, and critically evaluating peers' reports. The results of the study showed that, the ADI instructional model was able to meet pre-service teachers’ expectations especially in cognitive dimension. 

___

  • Wells, M., Hestenes, D., & Swackhamer, G. (1995). A modeling method for high school physics instruction. American Journal of Physics, 63(7), 606 – 619.
  • Wallace, C., Hand, B., & Yang, E.-M. (2005). The science writing heuristic: Using writing as a tool for learning in the laboratory. In W. Saul (Ed.), Crossing borders in literacy and science instruction (pp. 375–398). Arlington, VA: NSTAPress
  • Walker, J., & Sampson, V. (2013). Learning to argue and arguing to learn in science: Argument-Driven Inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course. Journal of Research Science Teaching, 50(50), 561-596
  • Walker, J., Sampson, V., Grooms, J., Anderson, B., & Zimmerman, C.(2012) Argument-Driven Inquiry in undergraduate chemistry labs: The impact on students’ conceptual understanding, argument skills, and attitudes towards science, Journal of College Science Teaching, 41(4), 74-81.
  • Strimaitis, A. M., Southerland, S. A., Sampson, V. D., Enderle, P. J., & Grooms, J. (2017). The potential of ambitious instruction for fostering science for all: A comparative case study of biology laboratory instruction at two high schools. School Science and Mathematics, 117 (3- 4), 92 – 103.
  • Scott, P. H., Asoko, H., & Leach, J. (2007). Students conceptions and conceptual learning in science. In S. K. Abell & N. Lederman (Eds.), Handbook of research in science education (pp. 31 – 56). Mahwah, NJ: Erlbaum.
  • Sampson, V., Enderle, P., Grooms, J., & Witte, S. (2013) Writing to learn and learning to write during the school science laboratory: Helping middle and high school students develop argumentative writing skills as they learn core ideas. Science Education 97(5), 643-670.
  • Sampson, V. and Walker, J. (2012) Argument-Driven Inquiry as a way to help undergraduate students write to learn by learning to write in chemistry. International Journal of Science. Education, 34(10), 1443-1485
  • Novak, J. D. (1993) Human Constructivism: A Unification of Psychological and Epistemological Phenomena in Meaning Making. International Journal of Personal Construct Psychology, 6, 167−193.
  • Novak, J. D. (2010) Learning, Creating, and Using Knowledge; Taylor & Francis Group: New York, NY
  • Obenland, C.A., Kincaid, K.; Hutchinson, J.S. (2013). A General Chemistry Laboratory Course. Designed for Student Discussion. Journal of Chemical Education, 91, 1446-1450.
  • Kaya, E. & Cetin, P. S (2012). Investigation of pre-service chemistry teachers’ chemistry laboratory anxiety levels. International Journal on New Trends in Education and Their Implications, 3(3), 90-98.
  • Högström, P., Ottander, C., & Benckert, S. (2010). Lab work and learning in secondary school chemistry: the importance of teacher and student interaction. Research in Science Education, 40, 505-523.
  • Hofstein, A., &Lunetta, V. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54.
  • Hofstein, A. (2004). The laboratory in chemistry education; thirty years of experience with developments, implementation and research. Chemistry Education: Research and Practice, 5(3), 247-264.
  • Hestenes, D. (1992). Modeling games in the Newtonian world. American Journal of Physics, 60, 440 – 454.
  • Güneş, M. H., Şener, N., Topal Germi, N. ve Can, N. (2013). Fen ve teknoloji dersinde laboratuvar kullanımına yönelik öğretmen ve öğrenci değerlendirmeleri, [Teacher and Student Assessments Regarding to Use of Science and Technology Laboratory]. DicleUniversity Journal of Ziya Gökalp Education Faculty, 20, 1-11
  • Galloway, K. R., & Bretz, S. L. (2015) Development of an Assessment Toolto Measure Students’ Meaningful Learning in the Undergraduate Chemistry Laboratory. Journal of Chemical Education, 92, 1149−1158.
  • Figueiredo, M.,Esteves, L., Neves, J., & Vicente, H.(2016) A data mining approach to study the impact of the methodology followed in chemistry lab classes on the weight attributed by the students to the lab work on learning and motivation. Chemistry Education Research and. Practice, 17, 156-171
  • Eymur, G., & Cetin, P.S. (2017). Argümantasyon Tabanlı Sorgulayıcı Araştırma Yönteminin Öğretmen Adaylarının Fen Öğretimi Öz Yeterlik İnancına Etkisi, [Effects of Argument-Driven Inquiry on Pre-Service Teachers’ SelfEffıcacy of Science Teaching]. Erzincan University Journal of Education, 19(3), 36-50.
  • Erenler, S. (2017). Argüman Temelli Sorgulayıcı Araştırma Uygulamarının Fen Bilgisi Öğretmen Adaylarının Üstbilişsel Farkındalık Düzeyine ve Yazma Becerilerine Olan Etkisinin İncelenmesi[The effect of argument driven inquirymethod on pre-service teachers’ metacognitive awareness and scientific writing skills] , Master Thesis, Abant Izzet Baysal University, Bolu, Turkey.
  • Eddy, R. M. (2000). Chemophobia in the college classroom: Extent, sources, and students characteristics. Journal of Chemical Education, 77(4), 514-517
  • Duschl, R., Schweingruber, H., & Shouse, A. (Eds.). (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
  • Domin, D. (1999). A review of laboratory instruction styles. Journal of Chemical Education, 76(4), 543–547.
  • Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5–12.
  • Cetin, P.S., Metin, D., & Kaya, E.( 2016). Laboratuvar Uygulamalarında Yeni Bir Yaklaşım: Argüman Temelli Sorgulayıcı Araştırma (ATSA) [A new approach to laboratory instruction: Argument driven inquiry]. Ahi Evran University Journal of KırsehirEducation Faculty, 17(2), 223-242.
  • Cetin, P.S., & Eymur, G. (2017). Developing Students’ Scientific Writing and Presentation Skills through Argument Driven Inquiry: An Exploratory Study. Journal of Chemical Education, 94(7), 837- 843.
  • Cooper, M., & Kerns, T. (2006). Changing the laboratory: Effects of a laboratory course on student attitudes and perceptions. Journal of Chemical Education, 83, 1356–1361
  • Bowen, C. V. (1999). Development and score validation of a chemistry laboratory anxiety instrument (CLAI) for college chemistry students. Educational Psychological Measurement, 59(1), 171-185
  • Bretz, S. L.(2001) Novak’s Theory of Education: Human Constructivism and Meaningful Learning. Journal of Chemical Education, 78, 107.
  • Azizoğlu, N. ve Uzuntiryaki, E. (2006). Kimya laboratuvarı endişe ölçeği [Chemistry laboratory anxiety scala]. Hacettepe University Journal of Education, 30, 55-62.
  • Anderson, C. (2007). Perspectives on science learning. In S. K. Abell & N. Lederman (Eds.), Handbook of research in science education (pp. 3 – 30). Mahwah, NJ: Erlbaum.
Bartın Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bartın Üniversitesi Eğitim Fakültesi