Pelvis'ten Radyolojik Yöntemler ile Cinsiyet Taiyini: Türkiye Örneklemi

İskelet kalıntılardan cinsiyet tayini hem adli antropoloji hem de biyoarkeolojide önemli bir konudur. Cinsiyet tahminine ilişkin yüksek düzeyde bir doğruluk elde etme şansı, analiz edilen iskelet bileşeniyle ve cinsiyetler arasındaki şekil ve boyut farklılıklarını tanımlamak için kullanılan tekniklerin güvenilirlik dereceleri ile ilgilidir. Güncel görüş, Pelvisi en güvenilir cinsiyet göstergesi olarak kabul etmektedir, çünkü Pelvis özellikle yetişkin kişilerde hem morfolojik hem de metrik olarak en yüksek seksüel dimofizm gösteren kemiktir. Bununla birlikte, kimliklendirme çalışmalarında bilgisayarlı tomografi (BT) başarılı bir yöntem olarak kabul görmekte ve son yıllarda popülasyona özgü referans veri tabanlarının oluşturulmasında kullanımı oldukça artmaktadır. Bu çalışmanın verisini 50 Pelvis kemiğinin bilgisayarlı tomografi görüntüleri temel alınarak oluşturulan 3boyutlu pelvis görüntüleri üzerinden alınan beş metrik ölçüm oluşturmaktadır.  Çalışmanın amacı pelvis kemiği üzerinden Türkiye popülasyonuna özgü cinsiyet tayini standartları geliştirmektir.

Sex Estimation from the Pelvis Using Radiological Methods: Turkish Sample

Sex estimation from skeletal remains is an important issue in both forensic anthropology and bioarchaeology. The chances of achieving a high degree of accuracy in relation to the sex estimation is related to the degree of reliability of the techniques used to define the shape and size differences between the analyzed skeletal components and sexes. Currently pelvis is considered to be the most reliable sex indicator as it is the most sexually dimorphic element both morphologically and metrically, particularly in adult subjects. In addition to this computerized tomography (CT) is recognized as a successful method in identification studies, and its use in the development of population-specific reference databases has increased in recent years. The data of this study is consisted of five metric measurements taken from 3-dimensional pelvic images constructed from computed tomography images of 50 pelvic bones. The aim of this study is to develop population specific sex estimation standards by using pelvic bones for Turkish population.

___

  • Asala, S.A. (2001) “Sex determination from the head of the femur of South African whites and blacks”, Forensic Science International, 117(1), 15–22.Biwasaka, H., Aoki, Y., Sato, K., Tanijiri, T., Fujita, S., Dewa, K., ve Tomabechi, M. (2012) “Analyses of sexual dimorphism of reconstructed pelvic computed tomography images of contemporary Japanese using curvature of the greater sciatic notch, pubic arch and greater pelvis”, Forensic Science International, 219(1–3), 288.e1-288.e8. (https://doi.org/10.1016/j.forsciint.2011.11.032)Black, S., & Ferguson, E. (2011). Forensic anthropology: 2000 to 2010. CRC Press. Decker, S. J., Davy‐Jow, S. L., Ford, J. M., ve Hilbelink, D. R. (2011) “Virtual Determination of Sex: Metric and Nonmetric Traits of the Adult Pelvis from 3D Computed Tomography Models”, Journal of Forensic Sciences, 56(5), 1107–1114.Fisher, R. A. (1940) “The Precision of Discriminant Functions”, Annals of Eugenics, 10(1), 422–429. (https://doi.org/10.1111/j.1469-1809.1940.tb02264.x)Franklin, D., Cardini, A., Flavel, A., ve Marks, M. K. (2014) “Morphometric analysis of pelvic sexual dimorphism in a contemporary Western Australian population”, International Journal of Legal Medicine, 128(5), 861–872.Garvin, H. M. (2012) “Adult Sex Determination: Methods and Application”, A Companion to Forensic, D. Dirkmaat (Ed.). Chichester, UK: John Wiley & Sons, Ltd, 239-247. Gill, G. W. (2001) “Racial variation in the proximal and distal femur: heritability and forensic utility”, Journal of Forensic Sciences, 46(4), 791–799.Gómez-Valdés, J. A., Quinto-Sánchez, M., Menéndez Garmendia, A., Veleminska, J., Sánchez-Mejorada, G., ve Bruzek, J. (2012) “Comparison of methods to determine sex by evaluating the greater sciatic notch: Visual, angular and geometric morphometrics”, Forensic Science International, 221(1–3), 156.e1-156.e7. (https://doi.org/10.1016/J.FORSCIINT.2012.04.027)Gómez-Valdés, J. A., Ramírez, G. T., Molgado, S. B., Sain-Leu, P. H., Caballero, J. L. C., & Sánchez-Mejorada, G. (2011) “Discriminant Function Analysis for Sex Assessment in Pelvic Girdle Bones: Sample from the Contemporary Mexican Population”, Journal of Forensic Sciences, 56(2), 297–301. (https://doi.org/10.1111/j.1556-4029.2010.01663.x)Gonzalez, P. N., Bernal, V., & Perez, S. I. (2009) “Geometric morphometric approach to sex estimation of human pelvis”, Forensic Science International, 189(1–3), 68–74. (https://doi.org/10.1016/J.FORSCIINT.2009.04.012)İşcan, M. Y., ve Shihai, D. (1995) “Sexual dimorphism in the Chinese femur”, Forensic Science International, 74(1), 79–87.Karakas, H. M., Harma, A., ve Alicioglu, B. (2013) “The subpubic angle in sex determination: Anthropometric measurements and analyses on Anatolian Caucasians using multidetector computed tomography datasets”, Journal of Forensic and Legal Medicine, 20(8), 1004–1009. (https://doi.org/10.1016/J.JFLM.2013.08.013)King, C. A., Iscan, M. Y., ve Loth, S. R. (1998) “Metric and comparative analysis of sexual dimorphism in the Thai femur”, Journal of Forensic Sciences, 43(5), 954–958.Kranioti, E., Vorniotakis, N., Galiatsou, C., İşcan, M. Y., ve Michalodimitrakis, M. (2009) “Sex identification and software development using digital femoral head radiographs”, Forensic Science International, 189(1), 113. e1-113. e7.Krogman, W. M. ve Iscan, M. Y. (1986). The human skeleton in forensic medicine. Charles C. Thomas Springfield.López-Alcaraz, M., Garamendi González, P. M., Alemán Aguilera, I., ve Botella López, M. (2013) “Image analysis of pubic bone for sex determination in a computed tomography sample”, International Journal of Legal Medicine, 127(6), 1145–1155. (https://doi.org/10.1007/s00414-013-0900-1)Mahakkanukrauh, P., Ruengdit, S., Tun,M. S., Case, D.R., ve Sinthubua, A. (2017) “Osteometric sex estimation from the os coxa in a Thai population” Forensic Science International, 271(127),e1-e7.Patriquin, M., Steyn, M., ve Loth., S.R. (2005) “Metric analysis of sex differences in South African black and white pelves”, Forensic Science International, 147(2-3), 119-127 (https://doi.org/10.1016/j.forsciint.2004.09.074)
  • Seidler, H. (1980) “Sex-diagnosis of isolated Os coxae by discriminant functions”, Journal of Human Evolution, 9(8), 597–600. (https://doi.org/10.1016/0047-2484(80)90088-3)Srivastava, R., Saini, V., Rai, R. K., Pandey, S., ve Tripathi, S. K. (2012) “A Study of Sexual Dimorphism in the Femur Among North Indians”, Journal of Forensic Sciences, 57(1), 19–23.Steyn, M., ve Steyn, M. (2008) “Metric sex determination from the pelvis in modern Greeks” Forensic Science International,179(1), 86.e1-86.e6. (https://doi.org/10.1016/j.forsciint.2008.04.022)
  • Steyn, M., ve Patriquin, M. L. (2009) “Osteometric sex determination from the pelvis—Does population specificity matter?”, Forensic Science International, 191(1–3), 113.e1-113.e5. (https://doi.org/10.1016/J.FORSCIINT.2009.07.009)Tague, R. G. (2000) “Do big females have big pelves?”, American Journal of Physical Anthropology, 112(3), 377–393. Thompson, T., ve Black, S. (2006). Forensic human identification: An introduction. CRC Press. Torimitsu, S., vd. (2015) “Morphometric analysis of sex differences in contemporary Japanese pelves using multidetector computed tomography”, 257, 530.e1-530.e7. (https://doi.org/10.1016/j.forsciint.2015.10.018)
  • Washburn, S. L. (1949) “Sex differences in the pubic bone of Bantu and Bushman”, American Journal of Physical Anthropology, 7(3), 425–432. (https://doi.org/10.1002/ajpa.1330070308)