Ekonomik Büyüme, Ar-Ge Harcamaları, İhracat ve Net Yabancı Sermeye Girişinin Ülkelerin Ekonomik Fitnes Endeksi üzerindeki Etkisi

Ekonomik fitnes endeksi ülkelerin hem ürün çeşitlendirme hem de kompleks ürünleri küresel ölçekte rekabetçi bir şekilde üretme yeteneğini ölçen bir endekstir. Endeks aynı zamanda ekonomik açıdan küresel bir güç göstergesi olarak ifade edilebilir. Bu çalışmada da amaç bu endeks üzerinde ekonomik büyümenin, Ar-Ge harcamalarının, ihracatın ve net yabancı sermaye girişinin etkili olup olmadığını belirlemektir. Bu bağlamda 20 ülkenin 1996-2015 tarihleri arasında yıllık frekanstaki GSYH, Ar-Ge harcamaları, ihracat, net yabancı sermaye girişi ile ekonomik fitnes endeksi verileri arasındaki ilişki panel nedensellik, panel eşbütünleşme, FMOLS ve DOLS analizleri ile test edilmiştir. Değişkenler arasında eşbütünleşme ve nedensellik ilişkisi tespit edilmiş olup ekonomik fitnes endeksini, Ar-Ge harcamalarının pozitif etkilediği tespit edilmiştir.

Effects of Economic Growth, R&D Expenditures, Exports and Net Foreign Capital on Economic Fitness Index of Countries

The economic fitness index is an index that measures countries’ ability of product differentiation and degree of competitiveness in producing complex products on a global scale. The index can also be identified as an indicator of global economic power. This study aims to determine whether or not economic growth, R&D expenditures, exports, and net foreign capital inflows are effective on this index. In this context, the relationship between GDP, R&D expenditures, exports, net foreign capital inflows, and economic fitness index data of 20 countries obtained over the period 1996-2015 is tested via panel causality, panel cointegration, FMOLS, and DOLS analyses. Cointegration and causality relationships between the variables are determined, and it is concluded that the R&D expenditures have a positive impact on the economic fitness index, respectively.

Kaynakça

Breitung, J. ve Pesaran, M. H. (2008), Unit Roots and Cointegration in Panels. in The Econometrics of Panel Data, Springer, Heidelberg. Berlin, Germany.

Cristelli, M., Gabrielli, A., Tacchella, A., Caldarelli, G. ve Pietronero, L. (2013), “Measuring the Intangibles: A Metrics for The Economic Complexity of Countries and Products”, PloS One, Volume:8, Issue:8, p.1-20.

Emirmahmutoglu, F. ve Kose, N. (2011), “Testing for Granger Causality in Heterogeneous Mixed Panels”, Economic Modelling, Volume:28, Issue:3, p.870-876.

Gülmez, A., ve Yardımcıoğlu, F. (2012), “OECD Ülkelerinde Ar-Ge Harcamaları ve Ekonomik Büyüme İlişkisi: Panel Eşbütünleşme ve Panel Nedensellik Analizi (1990-2010)”, Maliye Dergisi, Cilt:163, Sayı:1, s.335-353.

Im, K.S, Pesaran, M.H. ve Shin, Y. (2003), “Testing for Unit Roots in Heterogeneous Panels”, Journal of Econometrics, Volume:115, p.53–74.

Levin, A., Lin, C. ve Chu, C.J. (2002), “Unit Root Tests in Panel Data: Asymptotic and Finitesample Properties”, Journal of Econometrics, Volume:108, p.1–24.

Narayan, P. K. ve Wong, P. (2009), “A Panel Data Analysis of The Determinants of Oil Consumption: The Case of Australia”, Applied Energy, Volume:86, Issue:12, p.2771- 2775.

Nelson, C. R. ve Plosser, C. R. (1982), “Trends and Random Walks in Macroeconmic Time Series: Some Evidence and Implications”, Journal Of Monetary Economics, Volume:10, Issue:2, p.139-162.

Pedroni, P. (1999), “Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors”, Oxford Bulletin of Economics and Statistics, Volume:61, Issue:S1, p.653-670.

Pedroni, P. (2001), Fully Modified OLS for Heterogeneous Cointegrated Panels. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels, Emerald Group Publishing Ltd., Bingley, UK.

Phillips, P. C. ve Hansen, B. E. (1990), “Statistical Inference in Instrumental Variables Regression with I (1) Processes”, The Review of Economic Studies, Volume:57, Issue:1, p.99-125.

Romer, P. M. (1989), “Human Capital and Growth: Theory and Evidence” National Bureau of Economic Research, No. w3173, p.1-49.

Roster, K., Harrington, L. ve Cader, M. (2018), “Country Case Studies in Economic Fitness: Mexico and Brazil”, Entropy, Volume:20, Issue:753, p.1-16.

Saikkonen, P. (1991), “Asymptotically Efficient Estimation of Cointegration Regressions”, Econometric Theory, Volume:7, Issue:1, p.1-21.

Sbardella, A., Pugliese, E., Zaccaria, A. ve Scaramozzino, P. (2018), “The Role of Complex Analysis in Modeling Economic Growth”, arXiv preprint arXiv, No:1808.10428, p.1- 19.

Servedio, V., Buttà, P., Mazzilli, D., Tacchella, A. ve Pietronero, L. (2018), “A New and Stable Estimation Method of Country Economic Fitness and Product Complexity”, Entropy, Volume:20, Issue:783, p.1-15.

Stock, J. H. ve Watson, M. W. (1993), “A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems”, Econometrica: Volume:61, Issue:4, p.783-820.

Tacchella, A., Mazzilli, D. ve Pietronero, L. (2018), “A Dynamical Systems Approach to Gross Domestic Product Forecasting”, Nature Physics, Volume:14, p.861–865.

The World Bank, (2018), World Development Indicators, http://databank.worldbank.org 12.09.2018.

Vinci, G. ve Benzi, R. (2018), “Economic Complexity: Correlations between Gross Domestic Product and Fitness”, Entropy, Volume:20, Issue:766, p.1-8.

Westerlund, J. (2007), “Testing for Error Correction in Panel Data”, Oxford Bulletin of Economics and Statistics, Volume:69, Issue:6, p.709-748.