İNEKLERDE PREPARTUM ANTİOKSİDAN UYGULAMALARININ KAN BHBA KONSANTRASYONU ÜZERİNE ETKİSİ

Amaç: Sunulan çalışmada, Holstein sütçü ineklerde prepartum antioksidan uygulamalarının postpartum 7. günde kan Beta-hidroksibütirik asid (BHBA) konsantrasyonu üzerine etkisinin araştırılması amaçlandı.  Antioksidanlar oksidatif hasarı geciktiren veya engelleyen maddeler olarak tanımlanmaktadır. Reaktif oksijen türleri (ROS) gibi oksidan maddeler mitokondrilerde adenozin trifosfat (ATP) üretiminin bir sonucu olarak oluşturulur. Oksidan maddeler hücrelerin dezoksiribonükleik asit, proteinler ve lipidler gibi makromoleküllerine zarar vererek doku hasarına neden olabilir. Lipitler oksidatif hasara karşı en hassas makromoleküllerdir. Oksidatif stres insülin mekanizmasını bozarak daha fazla lipolize neden olabilir. Böylece, aşırı derecede ROS üretimi esterleşmemiş yağ asitlerini (NEFA) ve BHBA üretimini artırabilir.  Gereç ve Yöntem: Bu çalışmada 80 adet multipar Holstein ırkı gebe sütçü inek kullanıldı. İnekler, tedavi (G1; n = 40) ve kontrol grubu (G2; n = 40) olmak üzere iki gruba ayrıldı. G1'e vitamin (A, D, E) ve iz element (Cu, Se, Mn, Zn) içeren solüsyonlar beklenen doğum tarihinden (280 gün) önce 21±5 ve 10±5 günlerde intramuskuler yolla uygulandı. G2'ye, plasebo ile aynı miktarda serum fizyolojik enjeksiyonu yapıldı.  Sonuç ve Tartışma: Kan BHBA konsantrasyonları G2’ye (0.84±0.29 mmol/L) göre G1’de (0.73±0.20 mmol/L) daha düşük bulundu. Sonuç olarak, sütçü ineklerde prepartum antioksidan uygulamalarının, postpartum dönemde kan BHBA konsantrasyonunu azalttığı tespit edildi. 

THE EFFECT OF PREPARTUM ANTIOXIDANT ADMINISTRATIONS ON BLOOD BHBA CONCENTRATION IN COWS

Objective: The presented study was aimed that investigation effect of the prepartum antioxidant administration on blood Beta-hydroxybutyric acid (BHBA) concentrations at day 7th postpartum in Holstein dairy cows.Antioxidants are defined as substances that delay or inhibits oxidative damage. Oxidantssuch as reactive oxygen species (ROS) are created as a consequence of adenosine triphosphate(ATP) production in mitochondria. Oxidants can cause tissue damage by damaging cells' macromolecules, such as DNA, proteins, and lipids. Lipids are the most sensitive macromolecule against oxidative damage. Oxidative stress can both disrupt the mechanism of insulin and induce more lipolysis. And so, ROS overproduction can enhance non‐esterified fatty acids (NEFA) and BHBA production.Material and Method:Eighty multiparous Holstein breed pregnant dairy cows were used in this study. The cows were divided into two groups astreatment (G1; n=40) and control groups (G2; n=40). In the G1, solutions containing of vitamins (A, D, E) and trace elements (Cu, Zn, Se, Mn) were performed intramuscularly at 21±5 and 10±5 days before expected parturition (280 days). In the G2, it was performed the same amounts of saline injections as a placebo.Result and Discussion: Blood BHBA levels were found that lower in the G1 group (0.73±0.20 mmol/L) compared to the G2 group (0.84±.29 mmol/L). In conclusion, it was determined that prepartum antioxidant administrations decrease blood BHBA concentration in the postpartum period in dairy cows.

___

  • 1. Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R., De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91-100.
  • 2. Abuelo, A., Hernández, J., Benedito, J. L., Castillo, C. (2015). The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation. Journal of animal physiology and animal nutrition, 99(6), 1003-1016.
  • 3. Sen, S., Chakraborty, R. (2011). The role of antioxidants in human health. Oxidative stress: diagnostics, prevention, and therapy, 1083, 1-37.
  • 4. Mavangira, V., Sordillo, L. M. (2018). Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle. Research in veterinary science, 116, 4-14.
  • 5. Sordillo, L. M., Aitken, S. L. (2009). Impact of oxidative stress on the health and immune function of dairy cattle. Veterinary immunology and immunopathology, 128(1-3), 104-109.
  • 6. Köroğlu, A., Hürkul, M. M., Kendir, G., Küçükboyacı, N. (2019). In vitro antioxidant capacities and phenolic contents of four Erica L.(Ericaceae) taxa native to Turkey. Marmara Pharmaceutical Journal, 23(1), 93-100.
  • 7. Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of dairy science, 101(1), 480-490.
  • 8. Puppel, K., Kapusta, A., Kuczyńska, B. (2015). The etiology of oxidative stress in the various species of animals, a review. Journal of the Science of Food and Agriculture, 95(11), 2179-2184.
  • 9. Pham-Huy, L. A., He, H., Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International journal of biomedical science: IJBS, 4(2), 89.
  • 10. Kuhn, M. J., Mavangira, V., Gandy, J. C., Sordillo, L. M. (2018). Production of 15-F2t-isoprostane as an assessment of oxidative stress in dairy cows at different stages of lactation. Journal of dairy science, 101(10), 9287-9295.
  • 11. Abuelo, A., Alves‐Nores, V., Hernandez, J., Muiño, R., Benedito, J. L., Castillo, C. (2016). Effect of parenteral antioxidant supplementation during the dry period on postpartum glucose tolerance in dairy cows. Journal of veterinary internal medicine, 30(3), 892-898.
  • 12. Zebeli, Q., Ghareeb, K., Humer, E., Metzler-Zebeli, B. U., Besenfelder, U. (2015). Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Research in veterinary science, 103, 126-136.
  • 13. Wankhade, P. R., Manimaran, A., Kumaresan, A., Jeyakumar, S., Ramesha, K. P., Sejian, V., Varghese, M. R. (2017). Metabolic and immunological changes in transition dairy cows: A review. Veterinary world, 10(11), 1367.
  • 14. Esposito, G., Irons, P. C., Webb, E. C., Chapwanya, A. (2014). Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Animal reproduction science, 144(3-4), 60-71.
  • 15. Lykkesfeldt, J., Svendsen, O. (2007). Oxidants and antioxidants in disease: oxidative stress in farm animals. The Veterinary Journal, 173(3), 502-511.
  • 16. Chang, Y. C., Chuang, L. M. (2010). The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. American journal of translational research, 2(3), 316.
  • 17. Song, Y., Li, X., Li, Y., Li, N., Shi, X., Ding, H., Wang, Z. (2014). Non-esterified fatty acids activate the ROS–p38–p53/Nrf2 signaling pathway to induce bovine hepatocyte apoptosis in vitro. Apoptosis, 19(6), 984-997.
  • 18. Li, Y., Ding, H. Y., Wang, X. C., Feng, S. B., Li, X. B., Wang, Z., Li, X. W. (2016). An association between the level of oxidative stress and the concentrations of NEFA and BHBA in the plasma of ketotic dairy cows. Journal of animal physiology and animal nutrition, 100(5), 844-851.
  • 19. Zarrin, M., De Matteis, L., Vernay, M. C. M. B., Wellnitz, O., van Dorland, H. A., Bruckmaier, R. M. (2013). Long-term elevation of β-hydroxybutyrate in dairy cows through infusion: Effects on feed intake, milk production, and metabolism. Journal of dairy science, 96(5), 2960-2972.