FARE KANINDA MIR-17 VE MIR-221'İN BENOMİL, KARBARİL, MALATİYON VE DİAZİNON PESTİSİTLERİ İLE UPREGÜLASYONU

Amaç: Artan kanıtlar miRNA'ların ekspresyonunun bazı bilinen toksik maddeler ve çevresel kirleticiler tarafından etkilendiğini göstermektedir. Pestisitlerin toksisite etkisini değerlendirmek üzere erkek Balb/c farelerinde benomil, karbaril, malatiyon, diazinonun onkojenik miRNA ekspresyona etkisi gerçek zamanlı PCR ile analiz edildi.Gereç ve Yöntem: 72 erkek fare 6 gruba ayrıldı: kontrol (0 mg/kg), malatiyon (30 mg/kg), karbaril (20 mg/kg), benomil (30 mg/kg) ve diazinon (20 mg/kg). Fareler 60 gün boyunca intragastrik yoldan sonda ile beslendi, daha sonra 30. ve 60. gününde öldürüldü. Serumda onkojenik mir-17 ve mir-221 düzeyleri ölçüldü. Sonuç ve Tartışma: Sonuçlar normal kontrollerle karşılaştırıldığında, mir-17 ve mir-221 tüm tedavi gruplarında 2 ay boyunca aşırı eksprese edildiği görüldü. Mir-17 ve mir-221 ekspresyon düzeyi ilk aya göre 60 gün sonra sırasıyla 9,2-17,7 kat ve 1,9-4 kat daha yüksekti. En düşük artış 1,9 kat ile mir-221'e aittir ki, hala kolay teşhis için yeterlidir. Bu sonuçlar iki onkojenik miRNA’nın disregülasyonuyla pestisitlerin negatif karsinojenik olasılığına yeni bilgiler sağlamaktadır. Sonuçlarımız mir-17 ve mir-221 seviyeleri ve toksisite riski arasındaki pozitif ilişki nedeniyle, bu miRNA'ların malignite tahmininde yararlı bir biyobelirteç olabileceğini ve diyagnostik değeri olduğunu göstermektedir.

UPREGULATION OF MIR-17 AND MIR-221 BY BENOMYL, CARBARYL, MALATHION AND DIAZINON PESTICIDES IN MICE BLOOD

Objective: Increasing evidence demonstrate that the expression of miRNAs is affected by several known toxicants and environmental contaminants. To evaluate the toxicity effect of the pesticides including benomyl, carbaryl, malathion, diazinon on male Balb/c mice, expression profile of two oncogenic miRNAs were analysed by real-time PCR.

___

  • Forouzesh, A., Zand, E., Soufizadeh, S., and Samadi Foroushani, S. (2015). Classification of herbicides according to chemical family for weed resistance management strategies–an update. Weed Research, 55, 334-358.
  • Ye, M., Beach, J., Martin, J.W., and Senthilselvan, A. (2013). Occupational pesticide exposures and respiratory health. International Journal of Environmental Research and Public Health, 10, 6442-6471.
  • Nakahara, K., Alzoreky, N.S., Yoshihashi, T., Nguyen, H.T., and Trakoontivakorn, G. (2013). Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (citronella grass). Japan Agricultural Research Quarterly, 37, 249-252.
  • Blain, P. (2001). Adverse health effects after low level exposure to organophosphates. (BMJ Publishing Group Ltd).
  • Karami-Mohajeri, S., and Abdollahi, M. (2011). Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Human & Experimental Toxicology, 30, 1119-1140.
  • Xiao, X., Clark, J.M., and Park, Y. (2017). Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food and Chemical Toxicology.
  • Baldi, I., Filleul, L., Mohammed-Brahim, B., Fabrigoule, C., Dartigues, J.-F., Schwall, S., Drevet, J.-P., Salamon, R., and Brochard, P. (2001). Neuropsychologic effects of long-term exposure to pesticides: results from the French Phytoner study. Environmental Health Perspectives, 109, 839.
  • Chapin, R.E., Robbins, W.A., Schieve, L.A., Sweeney, A.M., Tabacova, S.A., and Tomashek, K.M. (2004). Off to a good start: the influence of pre-and periconceptional exposures, parental fertility, and nutrition on children's health. Environmental Health Perspectives, 112, 69.
  • Sathyanarayana, S., Basso, O., Karr, C.J., Lozano, P., Alavanja, M., Sandler, D.P., and Hoppin, J.A. (2010). Maternal pesticide use and birth weight in the agricultural health study. Journal of Agromedicine, 15, 127-136.
  • Wahid, F., Shehzad, A., Khan, T., and Kim, Y.Y. (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1803, 1231-1243.
  • Bazot, Q., Paschos, K., Skalska, L., Kalchschmidt, J.S., Parker, G.A., and Allday, M.J. (2015). Epstein-Barr virus proteins EBNA3A and EBNA3C together induce expression of the oncogenic microRNA cluster miR-221/miR-222 and ablate expression of its target p57KIP2. PLoS Pathogens, 11, e1005031.
  • Wang, J., Chen, J., and Sen, S. (2016). MicroRNA as biomarkers and diagnostics. Journal of Cellular Physiology, 231, 25-30.
  • Hong, W.Y., and Cho, W.C. (2015). The role of microRNAs in toxicology. Archives of Toxicology, 89, 319-325.
  • Shimono, Y., Mukohyama, J., Nakamura, S.-i., and Minami, H. (2015). MicroRNA regulation of human breast cancer stem cells. Journal of Clinical Medicine, 5, 2.
  • O'donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Mycregulated microRNAs modulate E2F1 expression. Nature, 435, 839.
  • Di Leva, G., Garofalo, M., and Croce, C.M. (2014). MicroRNAs in cancer. Annual Review of Pathology: Mechanisms of Disease, 9, 287-314.
  • Vaissière, T., Sawan, C., and Herceg, Z. (2008). Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutation Research/Reviews in Mutation Research, 659, 40-48.
  • Sutherland, J.E., and Costa, M. (2003). Epigenetics and the environment. Annals of the New York Academy of Sciences, 983, 151-160.
  • Chaudhari, U., Nemade, H., Gaspar, J.A., Hescheler, J., Hengstler, J.G., and Sachinidis, A. (2016). MicroRNAs as early toxicity signatures of doxorubicin in human-induced pluripotent stem cellderived cardiomyocytes. Archives of Toxicology, 90, 3087-3098.
  • Zhao, Y., Ransom, J.F., Li, A., Vedantham, V., von Drehle, M., Muth, A.N., Tsuchihashi, T., McManus, M.T., Schwartz, R.J., and Srivastava, D. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129, 303-317.
  • Baccarelli, A., and Bollati, V. (2009). Epigenetics and environmental chemicals. Current Opinion in Pediatrics, 21, 243.
  • Kim, S.J., Yu, S.-Y., Yoon, H.-J., Lee, S.Y., Youn, J.-P., and Hwang, S.Y. (2015). Epigenetic Regulation of miR-22 in a BPA-exposed Human Hepatoma Cell. BioChip Journal, 9, 76-84.
  • Tilghman, S.L., Bratton, M.R., Segar, H.C., Martin, E.C., Rhodes, L.V., Li, M., McLachlan, J.A., Wiese, T.E., Nephew, K.P., and Burow, M.E. (2012). Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PloS One, 7, e32754.
  • Balkan, S., and Aktag, T. (2005). Study on the liver functions in rats exposed to benomyl. Journal of Biological Sciences, 5, 666-669.
  • Cancer, I.A.f.R.o. (2015). IARC Monographs Volume 112: evaluation of five organophosphate insecticides and herbicides. Lyon: World Health Organization.
  • Rouabhi, R. (2010). Introduction and toxicology of fungicides. In Fungicides. (InTech)
  • Li, Y., Casey, S.C., Choi, P.S., and Felsher, D.W. (2014). miR-17–92 explains MYC oncogene addiction. Molecular & Cellular Oncology, 1, e970092.
  • Garofalo, M., Quintavalle, C., Romano, G., M Croce, C., and Condorelli, G. (2012). miR221/222 in cancer: their role in tumor progression and response to therapy. Current Molecular Medicine, 12, 27-33.