FEN ÖĞRETİMİ VE ÖLÇME YAKLAŞIMLARININ ÖĞRENCİLERİN İLKÖĞRETİM FEN BAŞARISI ÜZERİNE ETKİSİ

Bu çalışmanın amacı, fen öğretim ve ölçme uygulamalarının ilköğretim düzeyindeki öğrencilerin fen başarısına etkisini incelemektir. Çalışmada, Okul Öncesi Uzun Dönem Araştırması-Anaokulu Sınıfı 1998- 99 verileri (ECLS-K) kullanılmıştır. İlköğretim dönemi çocukların verilerini içeren bu çalışmaya ilişkin veri seti 2004 yılında yayımlanmıştır. Öğrenci ve öğretmen düzeyi değişkenlerinden cinsiyet, sınıf ve fen öğretimi ve ölçme tekniklerinin (üst düzey düşünme becerileri, fen etkinliklerine ayrılan zaman ve test tabanlı ölçme uygulamaları gibi) öğrenci fen bilgisi başarısına etkilerini araştırmak amacıyla çoklu regresyon modeli uygulanmıştır. Önerilen regresyon modeli, öğrencilerin fen bilgisi başarısındaki varyasyonun yaklaşık %11’ini istatistiksel olarak önemli düzeyde açıklamıştır. Ayrıca, modelin açıklanmasında, tüm bağımsız değişkenlerin etkisi istatistiksel olarak anlamlı bulunmuştur. Özellikle erkek öğrencilerin ve üçüncü sınıfların fen başarısı kız öğrencilerden ve ikinci sınıflardan önemli düzeyde yüksektir. Ayrıca, öğretmenler alternatif ölçme tekniklerini kullanmaya ve analiz, sentez ve değerlendirme gibi üst-düzey düşünme becerilerine odaklandıklarında, öğrenciler fen dersinden daha fazla yararlanmıştır.

INFLUENCE OF SCIENCE TEACHING AND ASSESSMENT MODALITIES ON STUDENTS’ ELEMENTARY SCIENCE PERFORMANCE

The aim of the study is to investigate the influence of science instruction and assessment practices on elementary level students’ science success utilizing the data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K). The specific data set of the study regarding elementary school age children’s variables was released in 2004. A multiple regression modeling technique was employed to explore the effects of students and teacher level variables, including gender, grade level, science teaching and assessment techniques (such as emphasizing higher-order thinking skills, the time allocated for science-related activities, and test-based assessment practices) on students’ science achievement. Regression analysis of the proposed model revealed that the model significantly explained about 11% of the variance on students’ science scale scores. Furthermore, all predictors significantly contributed and estimated students’ science performance in the model. Specifically, the boys and the third graders had significantly higher mean science scores than the girls and the second graders. Moreover, when teachers tend to implement alternative assessment methods and focus more on higher-order skills such as analysis, synthesis, and evaluation in science, students benefited more in science. 

Kaynakça

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of educationalobjectives, Handbook I: Cognitive domain. New York: Longmans Green.

Bol, L., & Strage, A. (1996). The contradiction between teachers' instructional goals and their assessmentpractices in high school biology courses. Science Education, 80, 145–163.

Bowerman, B. L., & O’Connell, R. T. (1990). Linear statistical models: An applied approach (2nd ed).Belmont, CA: Duxbury.

Chang C-Y., & Barufaldi J. P. (1999). The use of a problem-solving-based instructional model in initiatingchange in students' achievement and alternative frameworks. International Journal of ScienceEducation, 21, 373-388.

Dimitrov, D. M. (1999). Gender differences in science achievement: Differential effect of ability, responseformat, and strands of learning outcomes. School Science and Mathematics, 99, 445–450

Dori, Y. J.(2003). From nationwide standardized testing to school-based alternative embedded assessment inIsrael: Students' performance in the matriculation 2000 project. Journal of Research in ScienceTeaching, 40, 34-52.

Echevarria, M. (2003). Hands on science reform, science achievement, and the elusive goal of ‘science for all’in a diverse elementary school district. Journal of Women and Minorities in Science and Engineering,9, 375-402.

Freedman, M. P. (1997). Relationship among laboratuary instruction, Attitude toward science, andachievement in science knowledge. Journal of Research in Science Teaching, 34, 343-357.

Gerstner, S. & Bogner, F. X. (2009). Cognitive achievement and motivation in hands-on and teacher-centredscience classes: does an additional hands-on consolidation phase (concept mapping) optimisecognitive learning at work stations? International Journal of Science Education, Retreived July 28,2009 from http://www.informaworld.com/smpp/content~db=all~content=a912679478

Genc, E., (2005). Development and validation of an instrument to evaluate science teachers' assessmentbeliefs and practices. Unpublished doctoral dissertation, Florida State University, Tallahassee, USA.

Greeno, J. G., Pearson, P. D., and Schoenfeld, A. H. (1996). Implications for NAEP of research onlearning and cognition. Report of a study commissioned by the national academy of education.Panel on the NAEP Trial State Assessment, conducted by the Institute for Research on Learning.Stanford, CA: National Academy of Education.

Hilliard, A. G. (2000). Excellence in education versus high-stakes standardized testing. Journal of TeacherEducation, 51, 293–304.

Martin, M. O., Mullis, I. V. S., Beaton, A. E., Gonzalez, E. J., Smith, T .A., Kelly, D L. (1997). Scienceachievement in the primary school years: IEA’s third international mathematics and science study(TIMMS). TIMSS International Study Center: Boston College, Chestnut Hill, MA, USA

Menard, S. (1995). Applied logistic regression analysis. Thousand Oaks, CA: Sage.

Myers, R. (1990). Causal and modern regression with applications (2nd ed). Boston, MA: Duxbury.

National Association for the Education of Young Children [NAEYC]. (2001). NAEYC standards for earlychildhood professional preparation. Washington, DC: Author.

National Science Teacher Association. (1996). Survey finds science teachers optimistic National ScienceEducation Standards will foster change. Washington, D. C. Retrieved June 10, 2009 fromhttp://www.nsta.org/survey1.

National Research Council [NRC]. (1999). The assessment of science meets the science assessment. Thesummary of Workshop. Washington, DC: National Academy Press,

Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and itsimplications. International Journal of Science Education, 25, 1049-1079.

Pellegrino, J. W., Chudowsky, N., & Glaser, R.., Eds. (2001). Knowing what students know: The science anddesign of educational assessment. Washington D. C.: National Academy Press.

Pringle, R., & Martin, S. (2005). The potential impacts of upcoming high-stakes testing on the teaching ofscience in elementary classrooms. Research in Science Education, 35, 347-361(15).

Shepard, L. (2002). The hazards of high-stakes testing. Issues in Science and Technology Online. Retrievedon June 11, 2009, from http://www.issues.org/issues/19.2/shepard.htmSteinkamp, W. M. Maehr, M. L. (1983). Affect, ability and science achievement: A quantitative synthesis ofcorrelational research. Review of Educational Research, 53, 369-396.

Stohr-Hunt, P. M. (1998). An analysis of frequency of hands-on experience and science achievement. Journalof Research in Science Teaching, 33, 101 – 109.

Webb, N.L. & Mason, S. A. (2003). Taking stock of the national science education standards: the research forassessment and accountability. In Hollweg, K. S. & Hill, D. [Eds.]. What is the Influence of theNational Science Education Standards?: Reviewing the evidence, a workshop summary. NationalAcademy Press.

Wenglinsky, H. (2000). How teaching matters: Bringing the classroom back into discussions of teacherquality. (ERIC Document Reproduction Service No. ED447128).

Winking, D. (1997). Ensuring equity with alternative assessment. Retrieved May 12, 2009 fromhttp://www.ncrel.org/sdrs/areas/issues/methods/assment/as800.html.

Zohar, A., & Dori, Y. J. (2003). Higher-order thinking skills and low-achieving students: Are they mutuallyexclusive? Journal of the Learning Sciences, 12, 145-181.