Manta Karidesi (Squilla sp.) ve Mavi Yengeç (Callinectes sapidus, Rathbun, 1896) Atık Kabuklarından Üretilen Kitin ve Kitosanın Fizikokimyasal Özellikleri

Bu çalışma manta karidesi (Squilla sp.) ve mavi yengeç (Callinectes sapidus, Rathbun, 1896) atık kabuklarından elde edilen kitin ve kitosanın fizikokimyasal özelliklerinin yanı sıra yağ ve su bağlama kapasitelerini belirlemek amacıyla yapılmıştır. Çalışmada kontrol grubu olarak ticari kitin ve kitosan kullanılmıştır. Atık kabuklardan kimyasal yolla elde edilen kitin ve kitosanın yağ bağlama kapasitesi iki farklı yağ (ayçiçeği ve mısır özü) kullanılarak ölçülmüştür. Sonuç olarak, manta karidesi kitin ve kitosanının hem mavi yengeç hem de ticari kitin ve kitosandan daha yüksek yağ ve su bağlama kapasitesine sahip olduğu belirlenmiştir. Daha önce çalışılmamış ve ıskarta ürün olarak değerlendirilmiş manta karidesi kabuklardan üretilen kitin ve kitosanın yüksek yağ ve su bağlama kapasitesi nedeni ile endüstriyel alanda kullanılabileceği düşünülmektedir.

Physicochemical Characterization of Chitin and Chitosan Extracted from Shell Waste of Mantis Shrimp (Squilla sp.) and Blue Crab (Callinectes sapidus, Rathbun, 1896)

This study was undertaken to determine the physicochemical parameters of chitin and chitosan extracted from shell waste of manta shrimp and blue crab and to determine their fat-water binding capacity. The commercial chitin and chitosan was used as a control group. Chitin and chitosan production was carried out by a chemical method. In the analysis of fat binding capacity, two different types of oil (sunflower and corn) were used. Consequently, it was determined that the chitin and chitosan of manta shrimp had higher fat-water binding capacity than the capacity of the blue crab and commercial chitin and chitosan when compared. Due to their high fat-water binding capacity of chitin and chitosan of shell waste of manta shrimp used as waste product but not studied before, they have been thought to be used in industrial field.

___

  • AOAC, 1995. Official Methods of Analysis of AOAC İnternational, AOAC İnternational, Arlington, VA.
  • Archer, M. 2004. Shellfish Waste Disposal and Opportunities for by-Products, Erişim: http://www.seafish.org.uk, 1-27.
  • Bligh, E.G. ve Dyer, W.J. 1959. A rapid method of total lipid extraction and purification” Can. J. Biochem. Physiol., 37: 911-917.
  • Chang, K.L.B., Tsai, G., Lee, J. and Fu, W.R. 1997. Heterogeneous N-Deacetylation of Chitin in alkaline Solution. Carbohydrate Research, 303: 327-332.
  • Cho, Y.I., No, H.K. and Meyers, S.P. 1998. Physicochemical Characteristics and Functional Properties of Various Commercial Chitin and Chitosan Products. J. Agric. Food Chem., 46: 3839-3843.
  • Cunningham, J.A., Hof, C.H.J. and Braddy S.J. 2008. Lenisquilla californiensis: A New Species Of Stomatopod Crustacean. J. Paleont., 82(2): 431–435.
  • Diaz-Rojas, E.I., Arguelles-Monal, W.M., Higuera-Ciapara, I., Hernandez, J., Lizardi-Mendoza, J. and Goycoolea, F.M. 2006. Determination of Chitin and Protein Contents During the Isolation of Chitin from Shrimp Waste. Macromol. Biosci., 6: 340–347.
  • Elibol, M. 2008. Kabuklu Katı Deniz Ürünleri Artıklarından Kitin, Kitosan ve Türevlerinin Üretimi. Proje No: TÜBİTAK-MAG 106M241. 126 s. İzmir.
  • Fernandez-Kim, S.O. 2004. Physicochemical and Functional Properties Of Crawfish Chitosan as Affected by Different Processing Protocols. A Master Thesis, Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College, Seoul National University. 99 s.
  • Goosen, M.F.A. (Ed.). 1997. Applications of Chitin and Chitosan. CRC Press, United States of Amerika, New York, 336 s.
  • Khor, E. 2001. Chitin: Fulfilling a Biomaterials Promise”, Department of Chemistry, National University of Singapore, Republic of Singapore, Elsevier Science Ltd., The Boulevard, Langford Lane Kidlington, Oxford OX5 1 GB, UK. First Edition, ISBN: 0 08 0440185, 135 s.
  • Kjartansson, G.T., Zivanovic, S., Kristbergsson, K. and Weiss, J. 2006. Sonication-Assisted Extraction of Chitin From North Atlantic Shrimps (Pandalus borealis). J. Agric. Food Chem. 54: 5894-5902.
  • Küçükgülmez, A., Celik, M., Yanar, Y., Sen, D., Polat, H. and Kadak, A.E. 2011. Physicochemical Characterization of Chitosan Extracted from Metapenaeus stebbingi Shells. Food Chemistry, 126: 1144–1148.
  • Lavall, R.L., Assis, O.B.G. and Campana-Filho, S.P. 2007. β-Chitin from the Pens of Loligo sp.: Extraction and Characterization. Bioresource Technology, 98: 2465–2472.
  • Mohan, C.O., Ravishankar, C.N., Lalitha, K.V. and Srinivasa Gopal, T.K. 2012. Effect of Chitosan Edible Coating on the Quality of Double Filleted Indian Oil Sardine (Sardinella longiceps) During Chilled Storage, Food Hydrocolloids, 26: 167-174.
  • Naczk, M., Synowıeckı, J. and Sikorski, Z.E. 198l. The Gross Chemical Composition of Antarctic Krill Shell Waste. Food Chemistry, 7: 175 179.
  • Nadarajah, K., Prinyawiwatkul, W., No, H.K., Sathivel, S. and Xu, Z. 2006. Sorption Behavior Of Crawfish Chitosan Films As Affected By Chitosan Extraction Processes and Solvent Types. Journal of Food Science. 71(2): E33-E39.
  • Nemtsev, S.V., Gamzazade, A.I., Rogozhin, S.V., Bykova V.M. and Bykov, V.P. 2002. Deacetylation of Chitin under Homogeneous Conditions. Applied Biochemistry and Microbiology, 38 (6): 521–526.
  • No, H.K., Meyers, S.P. and Lee, K.S.J. 1989. Isolation and Characterization of Chitin from Crawfish Shell Waste. Agric. Food Chem. 37 (3): 575-579.
  • No, H.K., Lee, K.S. and Meyers, S.P. 2000. Correlation Between Physicochemical Characteristics and Binding Capacities of Chitosan Products. Journal of Food Science. 65 (7):1134-1137.
  • No, H.K. and Prinyawiwatkul, W. 2009. Stability of Chitosan Powder During Long-Term Storage at Room Temperature. J. Agric. Food Chem. 57: 8434–8438.
  • Peker, İ.; Oktar, F.; Eroğlu, M. ve Morkoç E. 2006. Kerevit Kabuklarından Kitosan Üretilmesi ve Kesilmiş Sütün Suyundan Laktoz İzolasyonu İşleminde Kullanılması. Tübitak MAG Proje 104M017, 88 s.
  • Shepherd, R. Reader, S. and Falshaw, A. 1997. Chitosan Functional Properties. Glycoconjugate Journal, 14: 535-542.
  • Synowiecki, J. and Al-Khateeb, N.A.A.Q. 2000. The Recovery of Protein Hydrolysate during Enzymatic Isolation of Chitin from Shrimp Crangon crangon Processing Discards. Food Chemistry, 68: 147-152.
  • Tajik, H., Moradi, M., Rohani, S.M.R., Erfani, A.M. and Jalali, F.S.S. 2008. Preparation of Chitosan from Brine Shrimp (Artemia urmiana) Cyst Shells and Effects of Different Chemical Processing Sequences on the Physicochemical and Functional Properties of the Product. Molecules. 13: 1263-1274.
  • Yaghobi, N. and Mirzadeh, H. 2004. Enhancement of Chitin’s Degree of Deacetylation by Multistage Alkali Treatments. Iranian Polymer Journal. 13 (2): 131-136.
  • Youn, D.K. No, H.K. and Prinyawiwatkul, W. 2007. Physical Characteristics of Decolorized Chitosan as Affected by Sun Drying During Chitosan Preparation. Carbohydrate Polymers. 69: 707–712.
  • Youn, D.K. No, H.K. and Prinyawiwatkul, W. 2009. Physicochemical and Functional Properties of Chitosans Prepared from Shells of Crabs Harvested in Three Different Years. Carbohydrate Polymers, 78: 41–45.