ARTIRILMIŞ GERÇEKLİKLE DESTEKLENMİŞ VİDEOLARLA ÖĞRETİMİN AKADEMİK BAŞARI, BİLİŞSEL YÜK VE MOTİVASYONA ETKİSİ

Beşinci sanayi devrimi içinde bulunduğumuz çağda farklı disiplinlerdeki kullanımı gittikçe yaygınlaşan artırılmış gerçeklik (AG) teknolojisi pek çok eğitimcinin de ilgi odağı haline gelmektedir. Bu çalışmanın amacı, mobil AG (MAG) ile desteklenmiş videolar aracılığıyla sunulan öğretimin öğrencilerin akademik başarı, bilişsel yük ve motivasyonlarına etkisini araştırmaktır. Karma araştırma yöntemlerinden açıklayıcı desenin kullanıldığı çalışmada, Bilgisayar ve Öğretim Teknolojileri Eğitimi bölümüne kayıtlı, 68 lisans öğrencisi yer almıştır. Öğrencilerden 35 katılımcı deney grubunu, 33 katılımcı ise kontrol grubunu oluşturmaktadır. Deney grubu MAG destekli videolarla öğrenme etkinliklerine katılmıştır. Kontrol gurubu ise geleneksel yöntemlerle sunulan öğretim etkinliklerine katılmıştır. Araştırma sürecinde akademik başarı testi, bilişsel yük ölçeği ve motivasyon ölçeği nicel veri toplama aracı olarak kullanılmıştır. Nitel veriler ise öğrencilerle yapılan odak grup görüşmeleri sonucunda elde edilmiştir. Nicel verilerin analizi için tek yönlü MANOVA analiz yönteminden yararlanılmıştır. Nitel veriler içerik analizi yöntemi kullanılarak analiz edilmiştir. Araştırmadan elde edilen bulgulara göre MAG destekli öğrenme sürecinin öğrencilerin akademik başarı, bilişsel yük ve motivasyon düzeylerine anlamlı bir etkisinin olmadığı görülmüştür. Sonuçlar, öğrencilerin görüş ve deneyimleri doğrultusunda elde edilen nitel verilerle birlikte irdelenmiş ve nicel sonuçların nedenleri açıklanmıştır. Bu çalışma, öğrenme sürecinde AG teknolojilerinin daha etkili olarak nasıl kullanılabileceğine ilişkin ip uçları sunması bakımından önemlidir. Ayrıca AG teknolojilerinin öğrenme sürecinde kullanımına ilişkin sınırlı sayıda deneysel çalışmanın olduğu göz önünde bulundurulduğunda, elde edilen sonuçların alanyazına farklı kanıtlar sunması bakımından yararlı olacağı öngörülmektedir.

___

  • Acar, S. (2009). Web Destekli Performans Tabanlı Öğrenmede ARCS Motivasyon Stratejilerinin Öğrencilerin Akademik Başarılarına. Öğrenmenin Kalıcılığına. Motivasyonlarına ve Tutumlarına Etkisi. (Yayınlanmamış doktora tezi). Gazi Üniversitesi/Eğitim Bilimleri Enstitüsü. Ankara.
  • Aebersold, M., Voepel-Lewis. T., Cherara, L., Weber, M., Khouri, C., Levine, R.., & Tait, A. R. (2018). Interactive Anatomy-Augmented Virtual Simulation Training, Clinical Simulation In Nursing, 15, 34-41.
  • Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literatüre, Educational Research Review, 20, 1-11.
  • Akçayır, M., Akçayır, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories, Computers in Human Behavior, 57, 334-342.
  • Albayrak, M., & Altıntaş, V. (2017). Artırılmış gerçeklik teknolojisinin veritabanı dersinde kullanımı. Istanbul Journal of Innovation in Education, 3(1), 13-23.
  • Alhumaidan. H., Lo, K. P. Y., & Selby, A. (2018). Co-designing with children a collaborative augmented reality book based on a primary school textbook, International Journal of Child-Computer Interaction, 15, 24-36.
  • Anglin, G. J., Vaez, H., & Cunningham, K. L. (2004). Visual representation and learning: The role of static and animated graphics. In: Jonassen DH (Editor). Handbook of Research on Educational Communications and Technology. 2nd Ed. Mahwah. NJ: Lawrence Erlbaum Associates Inc. p 865–916.
  • Anikina, O. V., & Yakimenko, E. V. (2015). Edutainment as a modern technology of education. Procedia-Social and Behavioral Sciences, 166, 475-479.
  • Aurusma. (2018). Aurusma software. https://www.aurasma.com/ adresinden, 21 şubat 2018 tarihinde alınmıştır.
  • Azuma, R. T. (1997). A survey of augmented reality. Presence-Teleoperators and Virtual Environments, 6(4). 355-385.
  • Beaubouef, T., & Mason, J. (2005). Why the high attrition rate for computer science students: Some thoughts and observations. ACM SIGCSE Bulletin, 37(2), 103–106.
  • Bergig, O., Hagbi, N., El-Sana, J., & Billinghurst, M. (2009, October). In-place 3D sketching for authoring and augmenting mechanical systems (pp. 87–94). Paper presented at the 8th IEEE international symposium on mixed and augmented reality (ISMAR), Orlando, FL.
  • Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12(5), http://www.academia.edu/download/4810740/ar_edu.pdf adresinden. 06 Şubat 2018 tarihinde erişilmiştir.
  • Billinghurst, M., Kato, H., & Poupyrev, I. (2001). The MagicBook: a transitional AR interface. Computers & Graphics, 25(5), 745-753.
  • Borrero, A. M., & Márquez, J. A. (2012). A pilot study of the effectiveness of augmented reality to enhance the use of remote labs in electrical engineering education. Journal of Science Education and Technology, 21(5). 540-557.
  • Bujak, K. R., Radu, I., Catrambone, R., Macintyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536-544.
  • Carlson, K. J., & Gagnon, D. J. (2016). Augmented reality integrated simulation education in health care. Clinical Simulation in Nursing, 12(4), 123-127.
  • Castillo, B. R. I., Sánchez, C. V. G., & Villegas, V. O. O. (2015). A pilot study on the use of mobile augmented reality for interactive experimentation in quadratic equations. Mathematical Problems in Engineering, 2015, 1-13.
  • Chang, C. Y., Lai, C. L., & Hwang, G. J. (2018). Trends and research issues of mobile learning studies in nursing education: A review of academic publications from 1971 to 2016. Computers & Education, 116, 28-48.
  • Chen, C. M., & Wu, C. H. (2015). Effects of different video lecture types on sustained attention. emotion. cognitive load. and learning performance. Computers & Education, 80, 108-121
  • Cheng. K. H. (2017). Reading an augmented reality book: An exploration of learners' cognitive load. motivation. and attitudes. Australasian Journal of Educational Technology, 33(4), 53-69.
  • Cheng, K. H.. & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449-462.
  • Chiang, T. H. C., Yang. S. J. H., & Hwang. G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Educational Technology & Society, 17(4). 352-365.
  • Clark, R. E. (1994). Media will never influence learning. Educational Technology Research and Development, 42(2), 21-29.
  • Creswell, J. W. (2014). Research design: Qualitative. quantitative. and mixed methods approaches (4nd ed.). Thousand Oaks. CA: Sage.
  • Cuendet, S.. Bonnard, Q., Do-Lenh, S., & Dillenbourg, P. (2013). Designing augmented reality for the classroom. Computers & Education, 68, 557-569.
  • Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18(1), 7–22.
  • Ferrer-Torregrosa, J., Torralba, J., Jimenez, M., García, S., & Barcia, J. (2015). ARBOOK: Development and assessment of a tool based on augmented reality for anatomy. Journal of Science Education and Technology, 24(1), 119-124.
  • Field, A. (2009). Discovering statistics using SPSS. 3rd Ed. London. United Kingdom: SAGE Publications Ltd.
  • Fraenkel, J., Wallen, N., & Hyun, H. H. (2012). How to design and evaluate research in education (8th ed.). Boston: McGraw Hill.
  • Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students' learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24(8), 1895-1906.
  • Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1-13.
  • Ifenthaler, D., & Eseryel, D. (2013). Facilitating complex learning by mobile augmented reality learning environments. In: Huang R. Kinshuk. Spector JM (Editors). Reshaping Learning: Frontiers of Learning Technology in a Global Context. 1st Ed. Berlin. Germany: Springer Science Business Media. p 415–438.
  • Kalaycı, Ş. (2014). Multivariate Statistical Techniques SPSS Applied. Ankara: Asil publishing.
  • Kamarainen, A. M., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M. S., vd. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers & Education, 68, 545-556.
  • Karppinen, P. (2005). Meaningful learning with digital and online videos: Theoretical perspectives. AACE Journal, 13(3), 233-250.
  • Kaufmann, H., & Dünser, A. (2007). "Summary of Usability Evaluations of an Educational Augmented Reality Application. International Conference on Virtual Reality. 660-669.
  • Keller, J. M. & Subhiyah, R. (1987). Manual for Course Interest Survey (CIS). Tallahassee. FL: Florida State University.
  • Keller, J. M. (1987a). Development and use of the ARCS model of motivational design. Journal of Instructional Development, 10(3). 2-10.
  • Keller, J. M. (1987b). Strategies for stimulating the motivation to learn. Performance & Instruction. 26(8), 1-7.
  • Kılıç, E., & Karadeniz, Ş. (2004). Hiper ortamlarda öğrencilerin bilişsel yüklenme ve kaybolma düzeylerinin belirlenmesi. Kuram ve Uygulamada Eğitim Yönetimi Dergisi, 40, 562-579.
  • Klatzky, R. L., Wu, B., Shelton, D., & Stetten, G. (2008). Effectiveness of augmented reality visualization versus cognitive mediation for learning actions in near space. ACM Transactions on Applied Perception, 5(1), 1-23.
  • Kozma, R. B. (1991). Learning with media. Review of educational research, 61(2), 179-211.
  • Kugelmann, D., Stratmann, L., Nühlen, N., Bork, F., Hoffmann, S., Samarbarksh, G., & Navab. N. (2018). An Augmented Reality magic mirror as additive teaching device for gross anatomy. Annals of Anatomy-Anatomischer Anzeiger, 215, 71-77.
  • Küçük, S., Kapakin, S., & Göktaş, Y. (2016). Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load. Anatomical Sciences Education, 9(5), 411-421.
  • Küçük, S., Yilmaz, R. M., & Göktaş, Y. (2014). Augmented reality for learning English: Achievement. attitude and cognitive load levels of students. Education and Science, 39(176), 393-404.
  • Leppink, J., Paas. F., Van Gog, T., van Der Vleuten. C. P., & Van Merrienboer, J. J. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 32-42.
  • Lin, C. Y., Chai, H. C., Wang, J. Y., Chen, C. J., Liu, Y. H., Chen, C. W., & Huang, Y. M. (2016). Augmented reality in educational activities for children with disabilities. Displays, 42, 51-54.
  • Lu, S. J., & Liu, Y. C. (2015). Integrating augmented reality technology to enhance children’s learning in marine education. Environmental Education Research, 21(4), 525-541.
  • Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the models of programming concepts held by the novice programmers. Computer Science Education, 21(1), 57–80.
  • Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., & Peire, J. (2011). New technology trends in education: Seven years of forecasts and convergence. Computers & Education. 57(3), 1893-1906.
  • Martín-Gutiérrez, J., & Contero, M. (2011). Improving academic performance and motivation in engineering education with augmented reality. Communications in Computer and Information Science, (2)174, 509-513.
  • Martín-Gutiérrez, J., Fabiani, P., Benesova, W., Meneses, M. D., & Mora, C. E. (2015). Augmented reality to promote collaborative and autonomous learning in higher education. Computers in Human Behavior, 51, 752-761.
  • Mayer, R. E. (2009). Multimedia Learning. (2nd ed.). Cambridge University Press: New York.
  • Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.
  • McMillan, J. H., & Schumacher, S. (2010). Research in Education: Evidence-Based Inquiry (7th ed.). London: Pearson.
  • Merkt, M., Weigand, S., Heier, A., & Schwan, S. (2011). Learning with videos vs. learning with print: The role of interactive features. Learning and Instruction, 21(6), 687-704.
  • Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactıons on Information and Systems. 77 (12), 1321-1329.
  • Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented reality: a class of displays on the reality-virtuality continuum. SPIE proceedings: telemanipulator and telepresence technologies. Boston. MA
  • Munoz-Cristobal, J. A., Jorrin-Abellan, I. M., Asensio-Perez, J. I., Martinez-Mones, A., Prieto, L. P., & Dimitriadis, Y. (2015). Supporting teacher orchestration in ubiquitous learning environments: A study in primary education. Learning Technologies, IEEE Transactions on Learning, 8(1), 83-97.
  • Nincarean, D., Alia, M. B., Halim. N. D. A., & Rahman. M. H. A. (2013). Mobile augmented reality: The potential for education. Procedia-Social and Behavioral Sciences. 103. 657-664.
  • Orús, C., Barlés, M. J., Belanche, D., Casaló, L., Fraj, E., & Gurrea, R. (2016). The effects of learner-generated videos for YouTube on learning outcomes and satisfaction. Computers & Education, 95, 254-269.
  • Paas, F., & Van Merriënboer, J. J. G. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6, 51–71.
  • Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional science, 32, 1-8.
  • Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent development. Educational Psychologist, 38(1), 1-4.
  • Plass, J. L., Moreno, R., & Brünken, R. (2010). Cognitive load theory. New York. NY: Cambridge University Press.
  • Prensky, M. R. (2010). Teaching digital natives: Partnering for real learning. Corwin Press.
  • Prieto, L.-P., Wen, Y., Caballero, D., & Dillenbourg, P. (2014). Review of augmented paper systems in education: An orchestration perspective. Educational Technology & Society, 17(4), 169-185.
  • Rapp, A. K., Healy, M. G., Charlton, M. E., Keith, J. N., Rosenbaum, M. E., & Kapadia, M. R. (2016). YouTube is the most frequently used educational video source for surgical preparation. Journal of Surgical Education, 73(6). 1072-1076.
  • Rasch, T., & Schnotz, W. (2009). Interactive and non-interactive pictures in multimedia learning environments: Effects on learning outcomes and learning efficiency. Learning and Instruction, 19(5), 411-422.
  • Sayed, N. E., Zayed, H. H., & Sharawy, M. I. (2011). ARSC: Augmented reality student card an augmented reality solution for the education field. Computers & Education, 56(4), 1045-1061.
  • Shirazi, A., & Behzadan, A. H. (2014). Design and assessment of a mobile augmented reality-based information delivery tool for construction and civil engineering curriculum. Journal of Professional Issues in Engineering Education and Practice, 141(3), 252-267.
  • Sorathia, K., & Servidio, R. (2012). Learning and experience: teaching tangible interaction & edutainment. Procedia-Social and Behavioral Sciences. 64, 265-274.
  • Soucy, J. N., Owens, V. A., Hadjistavropoulos, H. D., Dirkse, D. A., & Dear, B. F. (2016). Educating patients about Internet-delivered cognitive behaviour therapy: Perceptions among treatment seekers and non-treatment seekers before and after viewing an educational video. Internet Interventions, 6, 57-63.
  • SQL. (2018). Why SQL Database? https://www.voltdb.com/product/features-benefits/sql-database/ adresinden. 20 Şubat 2018 tarihinde erişilmiştir.
  • Taleb, Z., Ahmadi, A., & Musavi, M. (2015). The effect of m-learning on mathematics learning. Procedia-Social and Behavioral Sciences, 171, 83-89.
  • Tam, J. W., Van Son, C., Dyck, D., & Schmitter-Edgecombe, M. (2017). An educational video program to increase aging services technology awareness among older adults. Patient Education and Counseling, 100(8), 1564-1571.
  • Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering education through problem-based game projects with Scratch. Computers & Education, 120, 64-74. https://doi.org/10.1016/j.compedu.2018.01.011
  • Turkan, Y., Radkowski, R., Karabulut-Ilgu, A., Behzadan, A. H., & Chen, A. (2017). Mobile augmented reality for teaching structural analysis. Advanced Engineering Informatics, 34, 90-100.
  • Vroom, V. H. (1964). Work and Motivation. New York: Wiley.
  • Wang, X., Kim, M. J., Love, P. E. D., & Kang, S. C. (2013). Augmented Reality in built environment: Classification and implications for future research. Automation in Construction, 32, 1-13.
  • Wasko, C. (2013). What teachers need to know about augmented reality enhanced learning environments. TechTrends, 57(4), 17-21.
  • Wilson, T. D. (2015). Role of ımage and cognitive load in anatomical multimedia. In: Chan LK. Pawlina W. Teaching Anatomy: A Practical Guide. 1st Ed. New York. NY: Springer International Publishing. p 237–246.
  • Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68, 570-585.
  • Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status. opportunities and challenges of augmented reality in education. Computers & Education, 62, 41-49.

___

APA Çoban, M. (2020). ARTIRILMIŞ GERÇEKLİKLE DESTEKLENMİŞ VİDEOLARLA ÖĞRETİMİN AKADEMİK BAŞARI, BİLİŞSEL YÜK VE MOTİVASYONA ETKİSİ . Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi , 20 (2) , 1079-1098 . DOI: 10.17240/aibuefd.2020..-632456
Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • ISSN: 1303-0493
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2000
  • Yayıncı: Abant İzzet Baysal Üniversitesi Eğitim Fakültesi
Sayıdaki Diğer Makaleler

YABANCI DİL KAYGISI VE ÖĞRENİCİLERİN SÖZLÜ DÜZELTİCİ GERİBİLDİRİM İNANIŞLARININ DİL YETERLİLİK DÜZEYİ ODAKLI İNCELENMESİ

Vasfiye GECKİN

MESLEKİ EĞİTİMİN DEĞERLENDİRİLMESİ: MESLEK YÜKSEKOKULLARI BOYUTU

Feyzi KAYSİ

OKULLARIN BÜROKRATİK YAPISININ ÖĞRETMEN PROFESYONELLİĞİNE ETKİSİ: LİSE ÖĞRETMENLERİ ÜZERİNE BİR ARAŞTIRMA

Tuncer FİDAN, Adem BEYHAN

BİLİŞİM TEKNOLOJİLERİ ÖĞRETMENLERİNİN PERSPEKTİFİNDEN STEM EĞİTİMİ

Tugra KARADEMİR COŞKUN, Turgay ALAKURT, Burcu YILMAZ

OKUL ÖNCESİ ÖĞRETMEN ADAYLARININ FEN EĞİTİMİNE YÖNELİK ÖZ-YETERLİKLERİ İLE BAŞARI AMAÇ ORYANTASYONLARI ARASINDAKİ İLİŞKİNİN BAZI DEĞİŞKENLERE GÖRE İNCELENMESİ

Aycan BULDUR, Fatma ALİSİNANOĞLU

OKUL ÖNCESİ ÖĞRETMENLERİNİN MATEMATİKSEL GELİŞİM BİLGİLERİ, MATEMATİĞE YÖNELİK KAYGILARI VE İNANÇLARI İLE ÇOCUKLARIN ERKEN MATEMATİK YETENEKLERİ ARASINDAKİ İLİŞKİ

Nihal GÜNDOĞAN, Durmuş ASLAN

BEŞİNCİ SINIF ÖĞRENCİLERİNİN CANLILARI SINIFLANDIRMA DÜZEYLERİNİN BELİRLENMESİ

Salih GÜLEN

SOSYAL BİLGİLER ÖĞRETMEN ADAYLARININ “TARİHSEL ÖNEM” KAVRAMINA YÖNELİK GÖRÜŞLERİ

Cemil Cahit YEŞİLBURSA, Cengiz DÖNMEZ, Barış KAYA

ORTAÖĞRETİM ÖĞRENCİLERİNİN ÖZEL DERS ALMA NEDENLERİNİN İNCELENMESİ

Ayşe Betül AKDEMİR, Abdurrahman KILIÇ

SINIF ÖĞRETMENLERİNİN SINIF YÖNETİM BECERİLERİ, AKADEMİK İYİMSERLİKLERİ VE MESLEKİ BAĞLILIKLARI ARASINDAKİ İLİŞKİ

Yusuf ERGEN, Cevat ELMA